Stable Baselines3 Documentation
Release 1.8.0

Stable Baselines3 Contributors

Apr 08, 2023

USER GUIDE

1 Main Features

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39

3
Installation e e 3
Getting Started e 6
Reinforcement Learning Tips and Tricks o 7
Reinforcement Learning Resources e 12
RL Algorithms e e e e e e e e 12
Examples o L e e e e e 13
Vectorized Environments oL L L e e e e 27
Policy Networks o e 43
Using Custom Environments 0 e e e e e e e 51
Callbacks o e e e 53
Tensorboard Integration L e e 63
Integrations 71
RL Baselines3 Zo0 o o i e e 76
SB3 Contrib e e 78
Imitation Learning e e e e e e e e e 79
Migrating from Stable-Baselines e e 79
Dealing with NaNsandinfs 83
Developer Guide e 86
Onsavingandloading e 89
Exportingmodels e e e e e e e e e e 90
Base RLClass e 94
A2C . 103
DDPG 115
DON . 125
HER . . 134
PPO . . e 138
SAC . . e e 150
T D3 . . e e 161
Atari WIappers o o o e e e e e e e e e e e e e 171
Environments Utils L 175
Custom Environments e e e e e e e 177
Probability Distributions L L e e e e 181
Evaluation Helper e 193
Gym Environment Checker L 194
Monitor Wrapper 195
Logger . . . o e e e e e e e e 197
Action NOISE o v v e e e e e e 206
Utils . . e e 207
Changelog e e 213

1.40 Projects o v i e e e e e e e e e e e e e e e e e e
2 Citing Stable Baselines3
3 Contributing
4 Indices and tables
Python Module Index

Index

249

251

253

255

257

Stable Baselines3 Documentation, Release 1.8.0

Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the
next major version of Stable Baselines.

Github repository: https://github.com/DLR-RM/stable-baselines3
Paper: https://jmlr.org/papers/volume22/20-1364/20-1364.pdf
RL Baselines3 Zoo (training framework for SB3): https://github.com/DLR-RM/rl-baselines3-zoo

RL Baselines3 Zoo provides a collection of pre-trained agents, scripts for training, evaluating agents, tuning hyperpa-
rameters, plotting results and recording videos.

SB3 Contrib (experimental RL code, latest algorithms): https://github.com/Stable-Baselines-Team/
stable-baselines3-contrib

USER GUIDE 1

https://github.com/DLR-RM/stable-baselines3
https://github.com/hill-a/stable-baselines
https://github.com/DLR-RM/stable-baselines3
https://jmlr.org/papers/volume22/20-1364/20-1364.pdf
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

Stable Baselines3 Documentation, Release 1.8.0

2 USER GUIDE

CHAPTER
ONE

MAIN FEATURES

* Unified structure for all algorithms

* PEPS8 compliant (unified code style)

* Documented functions and classes

* Tests, high code coverage and type hints
* Clean code

 Tensorboard support

* The performance of each algorithm was tested (see Results section in their respective page)

1.1 Installation

1.1.1 Prerequisites

Stable-Baselines3 requires python 3.7+ and PyTorch >=1.11

Windows 10

We recommend using Anaconda for Windows users for easier installation of Python packages and required libraries.
You need an environment with Python version 3.6 or above.

For a quick start you can move straight to installing Stable-Baselines3 in the next step.

Note: Trying to create Atari environments may result to vague errors related to missing DLL files and modules. This
is an issue with atari-py package. See this discussion for more information.

https://conda.io/docs/user-guide/install/windows.html
https://github.com/openai/atari-py/issues/65

Stable Baselines3 Documentation, Release 1.8.0

Stable Release

To install Stable Baselines3 with pip, execute:

pip install stable-baselines3[extra]

Note: Some shells such as Zsh require quotation marks around brackets, i.e. pip install
'stable-baselines3[extra]' More information.

This includes an optional dependencies like Tensorboard, OpenCV or atari-py to train on atari games. If you do not
need those, you can use:

pip install stable-baselines3

Note: If you need to work with OpenCV on a machine without a X-server (for instance inside a docker image), you
will need to install opencv-python-headless, see issue #298.

1.1.2 Bleeding-edge version

pip install git+https://github.com/DLR-RM/stable-baselines3

Note: If you want to use Gymnasium (or the latest Gym version 0.24+), you have to use

pip install git+https://github.com/DLR-RM/stable-baselines3@feat/gymnasium-
-, support

pip install git+https://github.com/Stable-Baselines-Team/stable-baselines3-
—.contrib@feat/gymnasium-support

See PR #1327 for more information.

1.1.3 Development version

To contribute to Stable-Baselines3, with support for running tests and building the documentation.

git clone https://github.com/DLR-RM/stable-baselines3 && cd stable-baselines3
pip install -e .[docs,tests,extra]

4 Chapter 1. Main Features

https://stackoverflow.com/a/30539963
https://github.com/DLR-RM/stable-baselines3/issues/298
https://github.com/DLR-RM/stable-baselines3/pull/1327

Stable Baselines3 Documentation, Release 1.8.0

1.1.4 Using Docker Images

If you are looking for docker images with stable-baselines already installed in it, we recommend using images from RL
Baselines3 Zoo.

Otherwise, the following images contained all the dependencies for stable-baselines3 but not the stable-baselines3
package itself. They are made for development.

Use Built Images

GPU image (requires nvidia-docker):

docker pull stablebaselines/stable-baselines3

CPU only:

docker pull stablebaselines/stable-baselines3-cpu

Build the Docker Images

Build GPU image (with nvidia-docker):

make docker-gpu

Build CPU image:

make docker-cpu

Note: if you are using a proxy, you need to pass extra params during build and do some tweaks:

--network=host --build-arg HTTP_PROXY=http://your.proxy.fr:8080/ --build-arg http_
—proxy=http://your.proxy.fr:8080/ --build-arg HTTPS_PROXY=https://your.proxy.fr:8080/ --
—build-arg https_proxy=https://your.proxy.fr:8080/

Run the images (CPU/GPU)

Run the nvidia-docker GPU image

docker run -it --runtime=nvidia --rm --network host --ipc=host --name test --mount src="
—$(pwd)",target=/root/code/stable-baselines3, type=bind stablebaselines/stable-
—baselines3 bash -c¢ 'cd /root/code/stable-baselines3/ && pytest tests/'

Or, with the shell file:

./scripts/run_docker_gpu.sh pytest tests/

Run the docker CPU image

docker run -it --rm --network host --ipc=host --name test --mount src="$(pwd)",target=/
—root/code/stable-baselines3, type=bind stablebaselines/stable-baselines3-cpu bash -c
—'cd /root/code/stable-baselines3/ && pytest tests/'

Or, with the shell file:

1.1. Installation 5

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/NVIDIA/nvidia-docker
https://stackoverflow.com/questions/23111631/cannot-download-docker-images-behind-a-proxy

Stable Baselines3 Documentation, Release 1.8.0

./scripts/run_docker_cpu.sh pytest tests/

Explanation of the docker command:
e docker run -it create an instance of an image (=container), and run it interactively (so ctrl+c will work)
e —-rm option means to remove the container once it exits/stops (otherwise, you will have to use docker rm)
¢ —-network host don’t use network isolation, this allow to use tensorboard/visdom on host machine

e --ipc=host Use the host system’s IPC namespace. IPC (POSIX/SysV IPC) namespace provides separation of
named shared memory segments, semaphores and message queues.

e --name test give explicitly the name test to the container, otherwise it will be assigned a random name

e —-mount src=... give access of the local directory (pwd command) to the container (it will be map to /root/
code/stable-baselines), so all the logs created in the container in this folder will be kept

v

e bash -c '..."' Run command inside the docker image, here run the tests (pytest tests/)

1.2 Getting Started

Most of the library tries to follow a sklearn-like syntax for the Reinforcement Learning algorithms.

Here is a quick example of how to train and run A2C on a CartPole environment:

import gym
from stable_baselines3 import A2C
env = gym.make("CartPole-v1")

model = A2C("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=10_000)

vec_env = model.get_env()

obs = vec_env.reset()

for i in range(1000):
action, _state = model.predict(obs, deterministic=True)
obs, reward, done, info = vec_env.step(action)
vec_env.render()
VecEnv resets automatically
if done:
obs = vec_env.reset()

Note: You can find explanations about the logger output and names in the Logger section.

Or just train a model with a one liner if the environment is registered in Gym and if the policy is registered:

from stable_baselines3 import A2C

model = A2C("MlpPolicy", "CartPole-v1").learn(10000)

6 Chapter 1. Main Features

https://github.com/openai/gym/wiki/Environments

Stable Baselines3 Documentation, Release 1.8.0

1.3 Reinforcement Learning Tips and Tricks

The aim of this section is to help you doing reinforcement learning experiments. It covers general advice about RL
(where to start, which algorithm to choose, how to evaluate an algorithm, ...), as well as tips and tricks when using a
custom environment or implementing an RL algorithm.

Note: We have a video on YouTube that covers this section in more details. You can also find the slides here.

1.3.1 General advice when using Reinforcement Learning
TL;DR

1. Read about RL and Stable Baselines3

2. Do quantitative experiments and hyperparameter tuning if needed

3. Evaluate the performance using a separate test environment (remember to check wrappers!)
4. For better performance, increase the training budget

Like any other subject, if you want to work with RL, you should first read about it (we have a dedicated resource
page to get you started) to understand what you are using. We also recommend you read Stable Baselines3 (SB3)
documentation and do the tutorial. It covers basic usage and guide you towards more advanced concepts of the library
(e.g. callbacks and wrappers).

Reinforcement Learning differs from other machine learning methods in several ways. The data used to train the agent
is collected through interactions with the environment by the agent itself (compared to supervised learning where you
have a fixed dataset for instance). This dependence can lead to vicious circle: if the agent collects poor quality data
(e.g., trajectories with no rewards), then it will not improve and continue to amass bad trajectories.

This factor, among others, explains that results in RL may vary from one run to another (i.e., when only the seed of the
pseudo-random generator changes). For this reason, you should always do several runs to have quantitative results.

Good results in RL are generally dependent on finding appropriate hyperparameters. Recent algorithms (PPO, SAC,
TD3) normally require little hyperparameter tuning, however, don’t expect the default ones to work on any environment.

Therefore, we highly recommend you to take a look at the RL zoo (or the original papers) for tuned hyperparameters.
A best practice when you apply RL to a new problem is to do automatic hyperparameter optimization. Again, this is
included in the RL zoo.

When applying RL to a custom problem, you should always normalize the input to the agent (e.g. using VecNormal-
ize for PPO/A2C) and look at common preprocessing done on other environments (e.g. for Atari, frame-stack, ...).
Please refer to Tips and Tricks when creating a custom environment paragraph below for more advice related to custom
environments.

1.3. Reinforcement Learning Tips and Tricks 7

https://www.youtube.com/watch?v=Ikngt0_DXJg
https://araffin.github.io/slides/rlvs-tips-tricks/
rl.html
rl.html
https://github.com/araffin/rl-tutorial-jnrr19/tree/sb3
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://danieltakeshi.github.io/2016/11/25/frame-skipping-and-preprocessing-for-deep-q-networks-on-atari-2600-games/

Stable Baselines3 Documentation, Release 1.8.0

Current Limitations of RL

You have to be aware of the current limitations of reinforcement learning.

Model-free RL algorithms (i.e. all the algorithms implemented in SB) are usually sample inefficient. They require
a lot of samples (sometimes millions of interactions) to learn something useful. That’s why most of the successes in
RL were achieved on games or in simulation only. For instance, in this work by ETH Zurich, the ANYmal robot was
trained in simulation only, and then tested in the real world.

As a general advice, to obtain better performances, you should augment the budget of the agent (number of training
timesteps).

In order to achieve the desired behavior, expert knowledge is often required to design an adequate reward function. This
reward engineering (or RewArt as coined by Freek Stulp), necessitates several iterations. As a good example of reward
shaping, you can take a look at Deep Mimic paper which combines imitation learning and reinforcement learning to
do acrobatic moves.

One last limitation of RL is the instability of training. That is to say, you can observe during training a huge drop in
performance. This behavior is particularly present in DDPG, that’s why its extension TD3 tries to tackle that issue. Other
method, like TRPO or PPO make use of a trust region to minimize that problem by avoiding too large update.

How to evaluate an RL algorithm?

Note: Pay attention to environment wrappers when evaluating your agent and comparing results to others’ results.
Modifications to episode rewards or lengths may also affect evaluation results which may not be desirable. Check
evaluate_policy helper function in Evaluation Helper section.

Because most algorithms use exploration noise during training, you need a separate test environment to evaluate the
performance of your agent at a given time. It is recommended to periodically evaluate your agent for n test episodes (n
is usually between 5 and 20) and average the reward per episode to have a good estimate.

Note: We provide an EvalCallback for doing such evaluation. You can read more about it in the Callbacks section.

As some policy are stochastic by default (e.g. A2C or PPO), you should also try to set deterministic=True when
calling the .predict() method, this frequently leads to better performance. Looking at the training curve (episode reward
function of the timesteps) is a good proxy but underestimates the agent true performance.

We suggest you reading Deep Reinforcement Learning that Matters for a good discussion about RL evaluation.

You can also take a look at this blog post and this issue by Cédric Colas.

1.3.2 Which algorithm should | use?

There is no silver bullet in RL, depending on your needs and problem, you may choose one or the other. The first
distinction comes from your action space, i.e., do you have discrete (e.g. LEFT, RIGHT, ...) or continuous actions (ex:
go to a certain speed)?

Some algorithms are only tailored for one or the other domain: DQN only supports discrete actions, where SAC is
restricted to continuous actions.

The second difference that will help you choose is whether you can parallelize your training or not. If what matters
is the wall clock training time, then you should lean towards A2C and its derivatives (PPO, ...). Take a look at the
Vectorized Environments to learn more about training with multiple workers.

8 Chapter 1. Main Features

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.youtube.com/watch?v=aTDkYFZFWug
http://www.freekstulp.net/
https://xbpeng.github.io/projects/DeepMimic/index.html
https://arxiv.org/abs/1709.06560
https://openlab-flowers.inria.fr/t/how-many-random-seeds-should-i-use-statistical-power-analysis-in-deep-reinforcement-learning-experiments/457
https://github.com/hill-a/stable-baselines/issues/199
vec_envs.html

Stable Baselines3 Documentation, Release 1.8.0

To sum it up:

Discrete Actions

Note: This covers Discrete, MultiDiscrete, Binary and MultiBinary spaces

Discrete Actions - Single Process

DQN with extensions (double DQN, prioritized replay, ...) are the recommended algorithms. We notably provide
QR-DQN in our contrib repo. DQN is usually slower to train (regarding wall clock time) but is the most sample efficient
(because of its replay buffer).

Discrete Actions - Multiprocessed
You should give a try to PPO or A2C.
Continuous Actions

Continuous Actions - Single Process

Current State Of The Art (SOTA) algorithms are SAC, TD3 and TQC (available in our contrib repo). Please use the
hyperparameters in the RL zoo for best results.

Continuous Actions - Multiprocessed

Take a look at PPO, TRPO (available in our contrib repo) or A2C. Again, don’t forget to take the hyperparameters from
the RL zoo for continuous actions problems (cf Bullet envs).

Note: Normalization is critical for those algorithms

Goal Environment

If your environment follows the GoalEnv interface (cf HER), then you should use HER + (SAC/TD3/DDPG/DQN/QR-
DQN/TQC) depending on the action space.

Note: The batch_size is an important hyperparameter for experiments with HER

1.3. Reinforcement Learning Tips and Tricks 9

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

Stable Baselines3 Documentation, Release 1.8.0

1.3.3 Tips and Tricks when creating a custom environment
If you want to learn about how to create a custom environment, we recommend you read this page. We also provide a
colab notebook for a concrete example of creating a custom gym environment.
Some basic advice:
* always normalize your observation space when you can, i.e., when you know the boundaries

» normalize your action space and make it symmetric when continuous (cf potential issue below) A good practice
is to rescale your actions to lie in [-1, 1]. This does not limit you as you can easily rescale the action inside the
environment

* start with shaped reward (i.e. informative reward) and simplified version of your problem
* debug with random actions to check that your environment works and follows the gym interface:

Two important things to keep in mind when creating a custom environment is to avoid breaking Markov assumption and
properly handle termination due to a timeout (maximum number of steps in an episode). For instance, if there is some
time delay between action and observation (e.g. due to wifi communication), you should give a history of observations
as input.

Termination due to timeout (max number of steps per episode) needs to be handled separately. You should fill the key
in the info dict: info["TimeLimit.truncated"] = True. If you are using the gym TimeLimit wrapper, this will
be done automatically. You can read Time Limit in RL or take a look at the RL Tips and Tricks video for more details.

We provide a helper to check that your environment runs without error:

from stable_baselines3.common.env_checker import check_env

env = CustomEnv(argl, ...)
It will check your custom environment and output additional warnings if needed
check_env(env)

If you want to quickly try a random agent on your environment, you can also do:

env = YourEnv()
obs = env.reset()
n_steps = 10
for _ in range(n_steps):
Random action
action = env.action_space.sample()
obs, reward, done, info = env.step(action)
if done:
obs = env.reset()

Why should I normalize the action space?

Most reinforcement learning algorithms rely on a Gaussian distribution (initially centered at O with std 1) for continuous
actions. So, if you forget to normalize the action space when using a custom environment, this can harm learning and
be difficult to debug (cf attached image and issue #473).

Another consequence of using a Gaussian is that the action range is not bounded. That’s why clipping is usually used
as a bandage to stay in a valid interval. A better solution would be to use a squashing function (cf SAC) or a Beta
distribution (cf issue #112).

Note: This statement is not true for DDPG or TD3 because they don’t rely on any probability distribution.

10 Chapter 1. Main Features

custom_env.html
https://colab.research.google.com/github/araffin/rl-tutorial-jnrr19/blob/master/5_custom_gym_env.ipynb
https://arxiv.org/abs/1712.00378
https://www.youtube.com/watch?v=Ikngt0_DXJg
https://github.com/hill-a/stable-baselines/issues/473
https://github.com/hill-a/stable-baselines/issues/112

Stable Baselines3 Documentation, Release 1.8.0

spaces

action_space = spaces.Box(low=-1000, high=1000, shape=(n_actions,), dtype="float32")

action_space = spaces.Box(low=-0.02, high=0.02, shape=(n_actions,), dtype="float32")

action_space = spaces.Box(low=-1, high=1, shape=(n_actions,), dtype="float32")

1.3.4 Tips and Tricks when implementing an RL algorithm
When you try to reproduce a RL paper by implementing the algorithm, the nuts and bolts of RL research by John
Schulman are quite useful (video).
We recommend following those steps to have a working RL algorithm:
1. Read the original paper several times
2. Read existing implementations (if available)
3. Try to have some “sign of life” on toy problems
4

. Validate the implementation by making it run on harder and harder envs (you can compare results against the RL
700). You usually need to run hyperparameter optimization for that step.

You need to be particularly careful on the shape of the different objects you are manipulating (a broadcast mistake will
fail silently cf. issue #75) and when to stop the gradient propagation.

Don’t forget to handle termination due to timeout separately (see remark in the custom environment section above),
you can also take a look at Issue #284 and Issue #633.

A personal pick (by @araffin) for environments with gradual difficulty in RL with continuous actions:
1. Pendulum (easy to solve)
2. HalfCheetahBullet (medium difficulty with local minima and shaped reward)
3. BipedalWalkerHardcore (if it works on that one, then you can have a cookie)
in RL with discrete actions:
1. CartPole-v1 (easy to be better than random agent, harder to achieve maximal performance)

2. LunarLander

1.3. Reinforcement Learning Tips and Tricks 11

http://joschu.net/docs/nuts-and-bolts.pdf
https://www.youtube.com/watch?v=8EcdaCk9KaQ
https://github.com/hill-a/stable-baselines/pull/76
https://github.com/DLR-RM/stable-baselines3/issues/284
https://github.com/DLR-RM/stable-baselines3/issues/633

Stable Baselines3 Documentation, Release 1.8.0

3. Pong (one of the easiest Atari game)

4. other Atari games (e.g. Breakout)

1.4 Reinforcement Learning Resources

Stable-Baselines3 assumes that you already understand the basic concepts of Reinforcement Learning (RL).
However, if you want to learn about RL, there are several good resources to get started:

* OpenAl Spinning Up

 David Silver’s course

 Lilian Weng’s blog

» Berkeley’s Deep RL Bootcamp

* Berkeley’s Deep Reinforcement Learning course

¢ More resources

1.5 RL Algorithms

This table displays the rl algorithms that are implemented in the Stable Baselines3 project, along with some useful
characteristics: support for discrete/continuous actions, multiprocessing.

Name Box | Discrete | MultiDiscrete | MultiBinary | Multi Processing
ARS'

A2C

DDPG

DQN

HER

PPO
QR-DQN'
RecurrentPPO’
SAC

TD3

TQC!

TRPO'
Maskable PPO'

v v

v
v
v
v
v
v
v

ANENENENENERENENERENENEN

ENENENENENENENENENENENENEN

ANEN
\

Note: Tuple observation spaces are not supported by any environment, however, single-level Dict spaces are (cf.
Examples).

Actions gym. spaces:
* Box: A N-dimensional box that contains every point in the action space.
* Discrete: A list of possible actions, where each timestep only one of the actions can be used.

* MultiDiscrete: A list of possible actions, where each timestep only one action of each discrete set can be used.

! Implemented in SB3 Contrib

12 Chapter 1. Main Features

https://spinningup.openai.com/en/latest/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://sites.google.com/view/deep-rl-bootcamp/lectures
http://rail.eecs.berkeley.edu/deeprlcourse/
https://github.com/dennybritz/reinforcement-learning
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

Stable Baselines3 Documentation, Release 1.8.0

e MultiBinary: A list of possible actions, where each timestep any of the actions can be used in any combination.

Note: More algorithms (like QR-DQN or TQC) are implemented in our contrib repo.

Note: Some logging values (like ep_rew_mean, ep_len_mean) are only available when using a Monitor wrapper
See Issue #339 for more info.

Note: When using off-policy algorithms, Time Limits (aka timeouts) are handled properly (cf. issue #284). You can
revert to SB3 < 2.1.0 behavior by passing handle_timeout_termination=False viathe replay_buffer_kwargs
argument.

1.5.1 Reproducibility
Completely reproducible results are not guaranteed across PyTorch releases or different platforms. Furthermore, results
need not be reproducible between CPU and GPU executions, even when using identical seeds.

In order to make computations deterministics, on your specific problem on one specific platform, you need to pass a
seed argument at the creation of a model. If you pass an environment to the model using set_env (), then you also
need to seed the environment first.

Credit: part of the Reproducibility section comes from PyTorch Documentation

1.6 Examples

Note: These examples are only to demonstrate the use of the library and its functions, and the trained agents may not
solve the environments. Optimized hyperparameters can be found in the RL Zoo repository.

1.6.1 Try it online with Colab Notebooks!

All the following examples can be executed online using Google colab notebooks:
e Full Tutorial
* All Notebooks
* Getting Started
e Training, Saving, Loading
e Multiprocessing
* Monitor Training and Plotting
* Atari Games
* RL Baselines zoo
e PyBullet

* Hindsight Experience Replay

1.6. Examples 13

https://github.com/hill-a/stable-baselines/issues/339
https://arxiv.org/abs/1712.00378
https://github.com/DLR-RM/stable-baselines3/issues/284
https://pytorch.org/docs/stable/notes/randomness.html
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/araffin/rl-tutorial-jnrr19/tree/sb3
https://github.com/Stable-Baselines-Team/rl-colab-notebooks/tree/sb3
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/stable_baselines_getting_started.ipynb
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/saving_loading_dqn.ipynb
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/multiprocessing_rl.ipynb
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/monitor_training.ipynb
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/atari_games.ipynb
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/rl-baselines-zoo.ipynb
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/pybullet.ipynb
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/stable_baselines_her.ipynb

Stable Baselines3 Documentation, Release 1.8.0

* Advanced Saving and Loading

1.6.2 Basic Usage: Training, Saving, Loading

In the following example, we will train, save and load a DQN model on the Lunar Lander environment.

Fig. 1: Lunar Lander Environment

Note: LunarLander requires the python package box2d. You can install it using apt install swig and then pip
install box2d box2d-kengz

Warning: load method re-creates the model from scratch and should be called on the Algorithm without instanti-
ating it first, e.g. model = DQN.load("dgn_lunar", env=env) instead of model = DQN(env=env) followed
by model.load("dgn_lunar™). The latter will not work as load is not an in-place operation. If you want to
load parameters without re-creating the model, e.g. to evaluate the same model with multiple different sets of
parameters, consider using set_parameters instead.

import gym

from stable_baselines3 import DQN
from stable_baselines3.common.evaluation import evaluate_policy

Create environment
env = gym.make("LunarLander-v2")

Instantiate the agent

model = DQN("MlpPolicy", env, verbose=1)

Train the agent and display a progress bar

model .learn(total_timesteps=int(2e5), progress_bar=True)
Save the agent

model .save("dgn_lunar")

del model # delete trained model to demonstrate loading

Load the trained agent

NOTE: if you have loading issue, you can pass print_system_info=True"
to compare the system on which the model was trained vs the current one
model = DQN.load('"dgn_lunar", env=env, print_system_info=True)

model = DQN.load("dgn_lunar", env=env)

Evaluate the agent

NOTE: If you use wrappers with your environment that modify rewards,

this will be reflected here. To evaluate with original rewards,

wrap environment in a "Monitor'" wrapper before other wrappers.

mean_reward, std_reward = evaluate_policy(model, model.get_env(), n_eval_episodes=10)

(continues on next page)

14 Chapter 1. Main Features

https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/advanced_saving_loading.ipynb
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/saving_loading_dqn.ipynb

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

Enjoy trained agent

vec_env = model.get_env()

obs = vec_env.reset()

for i in range(1000):
action, _states = model.predict(obs, deterministic=True)
obs, rewards, dones, info = vec_env.step(action)
vec_env.render()

1.6.3 Multiprocessing: Unleashing the Power of Vectorized Environments

Fig. 2: CartPole Environment

import gym
import numpy as np

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.env_util import make_vec_env

from stable_baselines3.common.utils import set_random_seed

def make_env(env_id, rank, seed=0):

e

Utility function for multiprocessed env.

:param env_id: (str) the environment ID
:param num_env: (int) the number of environments you wish to have in subprocesses
:param seed: (int) the inital seed for RNG
:param rank: (int) index of the subprocess
def _init(Q):
env = gym.make(env_id)
env.seed(seed + rank)
return env
set_random_seed(seed)
return _init

if __name__ == "__main__":
env_id = "CartPole-v1"
num_cpu = 4 # Number of processes to use
Create the vectorized environment
env = SubprocVecEnv([make_env(env_id, i) for i in range(num_cpu)])

Stable Baselines provides you with make_vec_env() helper

which does exactly the previous steps for you.

You can choose between ‘DummyVecEnv' (usually faster) and ‘SubprocVecEnv'

env = make_vec_env(env_id, n_envs=num_cpu, seed=0, vec_env_cls=SubprocVecEnv)

(continues on next page)

1.6. Examples 15

https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/multiprocessing_rl.ipynb

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

model = PPO("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=25_000)

obs env.reset()

for _ in range(1000):
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()

1.6.4 Multiprocessing with off-policy algorithms

Warning: When using multiple environments with off-policy algorithms, you should update the gradient_steps
parameter too. Set it to gradient_steps=-1 to perform as many gradient steps as transitions collected. There is
usually a compromise between wall-clock time and sample efficiency, see this example in PR #439

import gym

from stable_baselines3 import SAC
from stable_baselines3.common.env_util import make_vec_env

env = make_vec_env("'Pendulum-v0", n_envs=4, seed=0)

We collect 4 transitions per call to “énv.step()’

and performs 2 gradient steps per call to “énv.step()’

if gradient_steps=-1, then we would do 4 gradients steps per call to ‘énv.step()’
model = SAC("MlpPolicy", env, train_freq=1, gradient_steps=2, verbose=1)
model.learn(total_timesteps=10_000)

1.6.5 Dict Observations

You can use environments with dictionary observation spaces. This is useful in the case where one can’t directly
concatenate observations such as an image from a camera combined with a vector of servo sensor data (e.g., rotation
angles). Stable Baselines3 provides SimpleMultiObsEnv as an example of this kind of of setting. The environment is
a simple grid world but the observations for each cell come in the form of dictionaries. These dictionaries are randomly
initialized on the creation of the environment and contain a vector observation and an image observation.

from stable_baselines3 import PPO
from stable_baselines3.common.envs import SimpleMultiObsEnv

Stable Baselines provides SimpleMultiObsEnv as an example environment with Dict.
—,observations
env = SimpleMultiObsEnv(random_start=False)

model = PPO("MultiInputPolicy", env, verbose=1)
model.learn(total_timesteps=100_000)

16 Chapter 1. Main Features

https://github.com/DLR-RM/stable-baselines3/pull/439#issuecomment-961796799

Stable Baselines3 Documentation, Release 1.8.0

1.6.6 Using Callback: Monitoring Training

Note: We recommend reading the Callback section

You can define a custom callback function that will be called inside the agent. This could be useful when you want to
monitor training, for instance display live learning curves in Tensorboard (or in Visdom) or save the best agent. If your
callback returns False, training is aborted early.

import os

import gym
import numpy as np
import matplotlib.pyplot as plt

from stable_baselines3 import TD3

from stable_baselines3.common import results_plotter

from stable_baselines3.common.monitor import Monitor

from stable_baselines3.common.results_plotter import load_results, ts2xy, plot_results
from stable_baselines3.common.noise import NormalActionNoise

from stable_baselines3.common.callbacks import BaseCallback

class SaveOnBestTrainingRewardCallback(BaseCallback):
Callback for saving a model (the check is done every “‘check_freq " steps)
based on the training reward (in practice, we recommend using “‘EvalCallback™).

:param check_freq:
:param log_dir: Path to the folder where the model will be saved.
It must contains the file created by the “Monitor' wrapper.
:param verbose: Verbosity level: 0 for no output, 1 for info messages, 2 for debug.
—messages

def __init__(self, check_freq: int, log_dir: str, verbose: int = 1):
super (SaveOnBestTrainingRewardCallback, self).__init__(verbose)
self.check_freq = check_freq
self.log_dir = log_dir
self.save_path = os.path.join(log_dir, "best_model™)
self.best_mean_reward = -np.inf

def _init_callback(self) -> None:
Create folder if needed
if self.save_path is not None:
os.makedirs(self.save_path, exist_ok=True)

def _on_step(self) -> bool:
if self.n_calls % self.check_freq == 0:

Retrieve training reward
x, vy = ts2xy(load_results(self.log_dir), "timesteps")

(continues on next page)

1.6. Examples 17

callbacks.html
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/monitor_training.ipynb

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

if len(x) > 0:
Mean training reward over the last 100 episodes
mean_reward = np.mean(y[-100:])
if self.verbose >= 1:
print(£f"Num timesteps: {self.num_timesteps}")
print(f"Best mean reward: {self.best_mean_reward:.2f} - Last mean reward.
—per episode: {mean_reward:.2f}")

New best model, you could save the agent here
if mean_reward > self.best_mean_reward:
self.best_mean_reward = mean_reward
Example for saving best model
if self.verbose >= 1:
print(f"Saving new best model to {self.save_path}")
self.model.save(self.save_path)

return True

Create log dir
log_dir = "tmp/"
os.makedirs(log_dir, exist_ok=True)

Create and wrap the environment
env = gym.make("LunarLanderContinuous-v2")
env = Monitor(env, log_dir)

Add some action noise for exploration

n_actions = env.action_space.shape[-1]

action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_
—actions))

Because we use parameter noise, we should use a MIpPolicy with layer normalization
model = TD3("MlpPolicy", env, action_noise=action_noise, verbose=0)

Create the callback: check every 1000 steps

callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir)

Train the agent

timesteps = 1le5

model .learn(total_timesteps=int(timesteps), callback=callback)

plot_results([log_dir], timesteps, results_plotter.X_TIMESTEPS, "TD3 LunarLander')
plt.show()

1.6.7 Atari Games

Fig. 3: Trained A2C agent on Breakout

Fig. 4: Pong Environment

Training a RL agent on Atari games is straightforward thanks to make_atari_env helper function. It will do all
the preprocessing and multiprocessing for you. To install the Atari environments, run the command pip install

18 Chapter 1. Main Features

https://danieltakeshi.github.io/2016/11/25/frame-skipping-and-preprocessing-for-deep-q-networks-on-atari-2600-games/
https://danieltakeshi.github.io/2016/11/25/frame-skipping-and-preprocessing-for-deep-q-networks-on-atari-2600-games/

Stable Baselines3 Documentation, Release 1.8.0

gym[atari, accept-rom-license] to install the Atari environments and ROMs, or install Stable Baselines3 with
pip install stable-baselines3[extra] to install this and other optional dependencies.

from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack
from stable_baselines3 import A2C

There already exists an environment generator

that will make and wrap atari environments correctly.

Here we are also multi-worker training (n_envs=4 => 4 environments)
env = make_atari_env('PongNoFrameskip-v4", n_envs=4, seed=0)

Frame-stacking with 4 frames

env = VecFrameStack(env, n_stack=4)

model = A2C("CnnPolicy", env, verbose=1)
model.learn(total_timesteps=25_000)

obs = env.reset()

while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()

1.6.8 PyBullet: Normalizing input features

Normalizing input features may be essential to successful training of an RL agent (by default, images are scaled but not
other types of input), for instance when training on PyBullet environments. For that, a wrapper exists and will compute
a running average and standard deviation of input features (it can do the same for rewards).

Note: you need to install pybullet with pip install pybullet

import os

import gym
import pybullet_envs

from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
from stable_baselines3 import PPO

env = DummyVecEnv([lambda: gym.make("HalfCheetahBulletEnv-v0")])

Automatically normalize the input features and reward

env = VecNormalize(env, norm_obs=True, norm_reward=True,
clip_obs=10.)

model = PPO("MlpPolicy", env)
model .learn(total_timesteps=2000)

Don't forget to save the VecNormalize statistics when saving the agent
log_dir = "/tmp/"

(continues on next page)

1.6. Examples 19

https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/atari_games.ipynb
https://github.com/bulletphysics/bullet3/
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/pybullet.ipynb

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

model .save(log_dir + "ppo_halfcheetah™)
stats_path = os.path.join(log_dir, "vec_normalize.pkl™)
env.save(stats_path)

To demonstrate loading
del model, env

Load the saved statistics

env = DummyVecEnv([lambda: gym.make("HalfCheetahBulletEnv-v0")])
env = VecNormalize.load(stats_path, env)

do not update them at test time

env.training = False

reward normalization is not needed at test time
env.norm_reward = False

Load the agent
model = PPO.load(log_dir + "ppo_halfcheetah", env=env)

1.6.9 Hindsight Experience Replay (HER)

For this example, we are using Highway-Env by @eleurent.

Fig. 5: The highway-parking-v0 environment.

The parking env is a goal-conditioned continuous control task, in which the vehicle must park in a given space with
the appropriate heading.

Note: The hyperparameters in the following example were optimized for that environment.

import gym
import highway_env
import numpy as np

from stable_baselines3 import HerReplayBuffer, SAC, DDPG, TD3
from stable_baselines3.common.noise import NormalActionNoise

env = gym.make("parking-v0'")

Create 4 artificial transitions per real transition
n_sampled_goal = 4

SAC hyperparams:

model = SAC(
"MultiInputPolicy",
env,
replay_buffer_class=HerReplayBuffer,
replay_buffer_kwargs=dict(

(continues on next page)

20 Chapter 1. Main Features

https://github.com/eleurent/highway-env
https://github.com/eleurent
https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/stable_baselines_her.ipynb

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

n_sampled_goal=n_sampled_goal,
goal_selection_strategy="future",

s

verbose=1,

buffer_size=int(le6),

learning_rate=1le-3,

gamma=0.95,

batch_size=256,

policy_kwargs=dict(net_arch=[256, 256, 256]),

)

model.learn(int(2e5))
model . save("her_sac_highway")

Load saved model

Because it needs access to ‘env.compute_reward()’
HER must be loaded with the env

model = SAC.load("her_sac_highway", env=env)

obs = env.reset()

Evaluate the agent
episode_reward = 0
for _ in range(100):
action, _ = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render()
episode_reward += reward
if done or info.get("is_success", False):
print("Reward:", episode_reward, "Success?", info.get("is_success", False))
episode_reward = 0.0
obs = env.reset()

1.6.10 Learning Rate Schedule

All algorithms allow you to pass a learning rate schedule that takes as input the current progress remaining (from 1 to
0). PPO’s clip_range ™ parameter also accepts such schedule.

The RL Zoo already includes linear and constant schedules.

from typing import Callable

from stable_baselines3 import PPO

def linear_schedule(initial_value: float) -> Callable[[float], float]:

o

Linear learning rate schedule.

:param initial_value: Initial learning rate.
:return: schedule that computes

(continues on next page)

1.6. Examples 21

https://github.com/DLR-RM/rl-baselines3-zoo

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

current learning rate depending on remaining progress

o

def func(progress_remaining: float) -> float:

e

Progress will decrease from 1 (beginning) to 0.

:param progress_remaining:
:return: current learning rate

e

return progress_remaining * initial_value
return func

Initial learning rate of 0.001

model = PPO("MlpPolicy", "CartPole-vl1", learning _rate=linear_schedule(0.001), verbose=1)
model.learn(total_timesteps=20_000)

By default, ‘reset_num_timesteps is True, in which case the learning rate schedule.
—resets.

progress_remaining = 1.0 - (num_timesteps / total_timesteps)
model.learn(total_timesteps=10_000, reset_num_timesteps=True)

1.6.11 Advanced Saving and Loading

In this example, we show how to use a policy independently from a model (and how to save it, load it) and save/load a
replay buffer.

By default, the replay buffer is not saved when calling model.save(), in order to save space on the disk (a re-
play buffer can be up to several GB when using images). However, SB3 provides a save_replay_buffer() and
load_replay_buffer () method to save it separately.

Note: For training model after loading it, we recommend loading the replay buffer to ensure stable learning (for
off-policy algorithms). You also need to pass reset_num_timesteps=True to learn function which initializes the
environment and agent for training if a new environment was created since saving the model.

from stable_baselines3 import SAC
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.sac.policies import MlpPolicy

Create the model and the training environment
model = SAC('"MlpPolicy", "Pendulum-v1", verbose=1,
learning_rate=1e-3)

train the model
model.learn(total_timesteps=6000)

save the model
model . save("sac_pendulum")

(continues on next page)

22 Chapter 1. Main Features

https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/advanced_saving_loading.ipynb

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

the saved model does not contain the replay buffer

loaded_model = SAC.load("sac_pendulum")

print(£"The loaded_model has {loaded_model.replay_buffer.size()} transitions in its,
—buffer™)

now save the replay buffer too
model . save_replay_buffer('sac_replay_buffer")

load it into the loaded_model
loaded_model.load_replay_buffer("sac_replay_buffer")

now the loaded replay is not empty anymore
print(£"The loaded_model has {loaded_model.replay_buffer.size()} transitions in its,
—buffer")

Save the policy independently from the model

Note: if you don't save the complete model with ‘model.save()’
you cannot continue training afterward

policy = model.policy

policy.save("sac_policy_pendulum")

Retrieve the environment
env = model.get_env()

Evaluate the policy
mean_reward, std_reward = evaluate_policy(policy, env, n_eval_episodes=10,..,
—deterministic=True)

print (f"mean_reward={mean_reward:.2f} +/- {std_reward}")

Load the policy independently from the model
saved_policy = MlpPolicy.load("sac_policy_pendulum")

Evaluate the loaded policy
mean_reward, std_reward = evaluate_policy(saved_policy, env, n_eval_episodes=10,..

—deterministic=True)

print (f"mean_reward={mean_reward:.2f} +/- {std_reward}")

1.6.12 Accessing and modifying model parameters

You can access model’s parameters via set_parameters and get_parameters functions, or via model.policy.
state_dict() (and load_state_dict()), which use dictionaries that map variable names to PyTorch tensors.

These functions are useful when you need to e.g. evaluate large set of models with same network structure, visualize
different layers of the network or modify parameters manually.

Policies also offers a simple way to save/load weights as a NumPy vector, using parameters_to_vector() and
load_from_vector () method.

Following example demonstrates reading parameters, modifying some of them and loading them to model by imple-
menting evolution strategy (es) for solving the CartPole-v1 environment. The initial guess for parameters is obtained
by running A2C policy gradient updates on the model.

1.6. Examples 23

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

Stable Baselines3 Documentation, Release 1.8.0

from typing import Dict

import gym
import numpy as np
import torch as th

from stable_baselines3 import A2C
from stable_baselines3.common.evaluation import evaluate_policy

def mutate(params: Dict[str, th.Tensor]) -> Dict[str, th.Tensor]:
"""Mutate parameters by adding normal noise to them
return dict((name, param + th.randn_like(param)) for name, param in params.items())

mirn

Create policy with a small network
model = A2C(
"MlpPolicy",
"CartPole-v1",
ent_coef=0.0,
policy_kwargs={'"net_arch": [32]},
seed=0,
learning_rate=0.05,

Use traditional actor-critic policy gradient updates to
find good initial parameters
model.learn(total_timesteps=10_000)

Include only variables with "policy", "action" (policy) or "shared_net" (shared layers)
in their name: only these ones affect the action.
NOTE: you can retrieve those parameters using model.get_parameters() too
mean_params = dict(
(key, value)
for key, value in model.policy.state_dict().items()
if ("policy" in key or "shared_net" in key or "action" in key)

)

population size of 50 invdiduals
pop_size = 50

Keep top 10%

n_elite = pop_size // 10

Retrieve the environment

env = model.get_env()

for iteration in range(10):
Create population of candidates and evaluate them
population = []
for population_i in range(pop_size):
candidate = mutate(mean_params)
Load new policy parameters to agent.
Tell function that it should only update parameters
we give it (policy parameters)

(continues on next page)

24 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

model.policy.load_state_dict(candidate, strict=False)
Evaluate the candidate
fitness, _ = evaluate_policy(model, env)
population.append((candidate, fitness))
Take top 10% and use average over their parameters as next mean parameter
top_candidates = sorted(population, key=lambda x: x[1], reverse=True)[:n_elite]
mean_params = dict(
(
name,
th.stack([candidate[0] [name] for candidate in top_candidates]).mean(dim=0),
)
for name in mean_params.keys()
)
mean_fitness = sum(top_candidate[1] for top_candidate in top_candidates) / n_elite
print(f"Iteration {iteration + 1:<3} Mean top fitness: {mean_fitness:.2f}")
print(f"Best fitness: {top_candidates[0][1]:.2f}")

1.6.13 SB3 and ProcgenEnv

Some environments like Procgen already produce a vectorized environment (see discussion in issue #314). In order to
use it with SB3, you must wrap it in a VecMonitor wrapper which will also allow to keep track of the agent progress.

from procgen import ProcgenEnv

from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import VecExtractDictObs, VecMonitor

ProcgenEknv is already vectorized
venv = ProcgenEnv(num_envs=2, env_name="starpilot")

To use only part of the observation:
venv = VecExtractDictObs(venv, "rgb")

Wrap with a VecMonitor to collect stats and avoid errors
venv = VecMonitor(venv=venv)

model = PPO("MultiInputPolicy", venv, verbose=1)
model.learn(10_000)

1.6.14 SB3 with EnvPool or Isaac Gym

Just like Procgen (see above), EnvPool and Isaac Gym accelerate the environment by already providing a vectorized
implementation.

To use SB3 with those tools, you must wrap the env with tool’s specific VecEnviirapper that will pre-process the data
for SB3, you can find links to those wrappers in issue #772.

1.6. Examples 25

https://github.com/openai/procgen
https://github.com/DLR-RM/stable-baselines3/issues/314
https://github.com/sail-sg/envpool
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
https://github.com/DLR-RM/stable-baselines3/issues/772#issuecomment-1048657002

Stable Baselines3 Documentation, Release 1.8.0

1.6.15 Record a Video

Record a mp4 video (here using a random agent).

Note: It requires ffmpeg or avconv to be installed on the machine.

import gym
from stable_baselines3.common.vec_env import VecVideoRecorder, DummyVecEnv

env_id = "CartPole-v1"
video_folder = "logs/videos/"
video_length = 100

env =

obs

DummyVecEnv([lambda: gym.make(env_id)])

env.reset()

Record the video starting at the first step

env =

VecVideoRecorder(env, video_folder,

record_video_trigger=lambda x: x == 0, video_length=video_length,

name_prefix=f"random-agent-{env_id}")

env.reset()

for

in range(video_length + 1):

action = [env.action_space.sample()]

obs

= env.step(action)

Save the video
env.close()

1.6.16 Bonus: Make a GIF of a Trained Agent

import imageio
import numpy as np

from stable_baselines3 import A2C

model = A2C("MlpPolicy", "LunarLander-v2").learn(100_000)
images = []
obs = model.env.reset()
img = model.env.render(mode="rgb_array")
for i in range(350):
images.append(img)
action, _ = model.predict(obs)
obs, _, _ ,_ = model.env.step(action)

img = model.env.render(mode="rgb_array")

imageio.mimsave("lander_a2c.gif",

== 0], £fps=29)

[np.array(img) for i, img in enumerate(images) if i%2.

26

Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

1.7 Vectorized Environments

Vectorized Environments are a method for stacking multiple independent environments into a single environment.
Instead of training an RL agent on 1 environment per step, it allows us to train it on n environments per step. Because
of this, actions passed to the environment are now a vector (of dimension n). It is the same for observations,
rewards and end of episode signals (dones). In the case of non-array observation spaces such as Dict or Tuple,
where different sub-spaces may have different shapes, the sub-observations are vectors (of dimension n).

Name Box | Discrete | Dict | Tuple | Multi Processing
DummyVecEnv | v/ v v v
SubprocVecEnv | v v v v v

Note: Vectorized environments are required when using wrappers for frame-stacking or normalization.

Note: When using vectorized environments, the environments are automatically reset at the end of each episode.
Thus, the observation returned for the i-th environment when done[i] is true will in fact be the first observation
of the next episode, not the last observation of the episode that has just terminated. You can access the “real” final
observation of the terminated episode—that is, the one that accompanied the done event provided by the underlying
environment—using the terminal_observation keys in the info dicts returned by the VecEnv.

Warning: When defining a custom VecEnv (for instance, using gym3 ProcgenEnv), you should provide
terminal_observation keys in the info dicts returned by the VecEnv (cf. note above).

Warning: When using SubprocVecEnv, users must wrap the code in an if __name__ == "__main__": if
using the forkserver or spawn start method (default on Windows). On Linux, the default start method is fork
which is not thread safe and can create deadlocks.

For more information, see Python’s multiprocessing guidelines.

1.7.1 Vectorized Environments Wrappers

If you want to alter or augment a VecEnv without redefining it completely (e.g. stack multiple frames, monitor the
VecEnv, normalize the observation, ...), you can use VecEnviWirapper for that. They are the vectorized equivalents
(i.e., they act on multiple environments at the same time) of gym.Wrapper.

You can find below an example for extracting one key from the observation:

import numpy as np
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvStepReturn,.

—VecEnvWrapper

class VecExtractDictObs(VecEnviirapper):

o

(continues on next page)

1.7. Vectorized Environments 27

https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

A vectorized wrapper for filtering a specific key from dictionary observations.
Similar to Gym's FilterObservation wrapper:
https://github.com/openai/gym/blob/master/gym/wrappers/filter_observation.py

:param venv: The vectorized environment
:param key: The key of the dictionary observation

o

def __init__(self, venv: VecEnv, key: str):
self.key = key
super() .__init__(venv=venv, observation_space=venv.observation_space.spaces[self.
~key])

def reset(self) -> np.ndarray:
obs = self.venv.reset()
return obs[self.key]

def step_async(self, actions: np.ndarray) -> None:
self.venv.step_async(actions)

def step_wait(self) -> VecEnvStepReturn:
obs, reward, done, info = self.venv.step_wait()
return obs[self.key], reward, done, info

env = DummyVecEnv([lambda: gym.make("FetchReach-v1")])
Wrap the VecEnv
env = VecExtractDictObs(env, key="observation")

1.7.2 VecEnv

class stable_baselines3.common.vec_env.VecEnv(num_envs, observation_space, action_space)

An abstract asynchronous, vectorized environment.
Parameters
e num_envs (int) — Number of environments
* observation_space (Space) — Observation space
* action_space (Space) — Action space

abstract close()

Clean up the environment’s resources.

Return type
None

abstract env_is_wrapped(wrapper_class, indices=None)
Check if environments are wrapped with a given wrapper.

Parameters
* method_name — The name of the environment method to invoke.

e indices (Union[None, int, Iterable[int]]) — Indices of envs whose method to call

28 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

» method_args — Any positional arguments to provide in the call
¢ method_kwargs — Any keyword arguments to provide in the call

Return type
List[bool]

Returns
True if the env is wrapped, False otherwise, for each env queried.

abstract env_method(method_name, *method_args, indices=None, **method_kwargs)

Call instance methods of vectorized environments.
Parameters
¢ method_name (str) — The name of the environment method to invoke.
e indices (Union[None, int, Iterable[int]]) — Indices of envs whose method to call
¢ method_args — Any positional arguments to provide in the call
* method_kwargs — Any keyword arguments to provide in the call

Return type
List[Any]

Returns
List of items returned by the environment’s method call

abstract get_attr(attr_name, indices=None)

Return attribute from vectorized environment.
Parameters
e attr_name (str) — The name of the attribute whose value to return
¢ indices (Union[None, int, Iterable[int]]) — Indices of envs to get attribute from

Return type
List[Any]

Returns
List of values of ‘attr_name’ in all environments

get_images()
Return RGB images from each environment

Return type
Sequence[ndarray]

getattr_depth_check(name, already_found)

Check if an attribute reference is being hidden in a recursive call to __getattr__
Parameters
e name (str) — name of attribute to check for
* already_found (bool) — whether this attribute has already been found in a wrapper

Return type
Optional[str]

Returns
name of module whose attribute is being shadowed, if any.

1.7.

Vectorized Environments 29

Stable Baselines3 Documentation, Release 1.8.0

render (mode="human")

Gym environment rendering

Parameters
mode (str) — the rendering type

Return type
Optional[ndarray]

abstract reset()

Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Return type
Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]

Returns
observation

abstract seed(seed=None)

Sets the random seeds for all environments, based on a given seed. Each individual environment will still
get its own seed, by incrementing the given seed.

Parameters
seed (Optional[int]) — The random seed. May be None for completely random seeding.

Return type
List[Optional[int]]

Returns
Returns a list containing the seeds for each individual env. Note that all list elements may be
None, if the env does not return anything when being seeded.

abstract set_attr(attr_name, value, indices=None)

Set attribute inside vectorized environments.
Parameters
e attr_name (str)— The name of attribute to assign new value
* value (Any) — Value to assign to attr_name
* indices (Union[None, int, Iterable[int]]) — Indices of envs to assign value

Return type
None

Returns

step (actions)
Step the environments with the given action

Parameters
actions (ndarray) — the action

Return type
Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

Returns
observation, reward, done, information

30 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

abstract step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.
You should not call this if a step_async run is already pending.

Return type
None
abstract step_wait()
Wait for the step taken with step_async().
Return type

Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

Returns
observation, reward, done, information

1.7.3 DummyVecEnv

class stable_baselines3.common.vec_env.DummyVecEnv(env_fns)

Creates a simple vectorized wrapper for multiple environments, calling each environment in sequence on the
current Python process. This is useful for computationally simple environment such as cartpole-v1, as the
overhead of multiprocess or multithread outweighs the environment computation time. This can also be used for
RL methods that require a vectorized environment, but that you want a single environments to train with.

Parameters
env_fns (List[Callable[[], Env]]) — a list of functions that return environments to vectorize

Raises
ValueError - If the same environment instance is passed as the output of two or more different
env_fn.
close()
Clean up the environment’s resources.

Return type
None

env_is_wrapped (wrapper_class, indices=None)

Check if worker environments are wrapped with a given wrapper

Return type
List[bool]

env_method (method_name, *method_args, indices=None, **method_kwargs)
Call instance methods of vectorized environments.

Return type
List[Any]

get_attr (artr_name, indices=None)
Return attribute from vectorized environment (see base class).

Return type
List[Any]

1.7. Vectorized Environments 31

Stable Baselines3 Documentation, Release 1.8.0

get_images()
Return RGB images from each environment
Return type
Sequence[ndarray]
render (mode="human")

Gym environment rendering. If there are multiple environments then they are tiled together in one image
via BaseVecEnv.render(). Otherwise (if self.num_envs == 1), we pass the render call directly to
the underlying environment.

Therefore, some arguments such as mode will have values that are valid only when num_envs ==

Parameters
mode (str) — The rendering type.

Return type
Optional[ndarray]
reset()
Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Return type
Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]

Returns
observation
seed (seed=None)
Sets the random seeds for all environments, based on a given seed. Each individual environment will still
get its own seed, by incrementing the given seed.

Parameters
seed (Optional[int]) — The random seed. May be None for completely random seeding.

Return type
List[Optional[int]]

Returns
Returns a list containing the seeds for each individual env. Note that all list elements may be
None, if the env does not return anything when being seeded.
set_attr (attr_name, value, indices=None)
Set attribute inside vectorized environments (see base class).
Return type
None
step_async (actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.
You should not call this if a step_async run is already pending.

Return type
None

32 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

step_wait()
Wait for the step taken with step_async().
Return type

Tuple[Union[ndarray,Dict[str, ndarray], Tuple[ndarray, ...]],ndarray, ndarray,
List[Dict]]

Returns
observation, reward, done, information

1.7.4 SubprocVecEnv

class stable_baselines3.common.vec_env.SubprocVecEnv (env_fns, start_method=None)
Creates a multiprocess vectorized wrapper for multiple environments, distributing each environment to its own
process, allowing significant speed up when the environment is computationally complex.

For performance reasons, if your environment is not IO bound, the number of environments should not exceed
the number of logical cores on your CPU.

Warning: Only ‘“forkserver’ and ‘spawn’ start methods are thread-safe, which is important when TensorFlow
sessions or other non thread-safe libraries are used in the parent (see issue #217). However, compared to ‘fork’
they incur a small start-up cost and have restrictions on global variables. With those methods, users must
wrap thecodeinan if __name__ == "__main__": block. For more information, see the multiprocessing
documentation.

Parameters
* env_fns (List[Callable[[], Env]]) — Environments to run in subprocesses

» start_method (Optional[str]) — method used to start the subprocesses. Must be one of
the methods returned by multiprocessing.get_all_start_methods(). Defaults to ‘forkserver’
on available platforms, and ‘spawn’ otherwise.

close()

Clean up the environment’s resources.

Return type
None

env_is_wrapped (wrapper_class, indices=None)
Check if worker environments are wrapped with a given wrapper

Return type
List[bool]

env_method (method_name, *method_args, indices=None, **method_kwargs)

Call instance methods of vectorized environments.

Return type
List[Any]

get_attr (attr_name, indices=None)

Return attribute from vectorized environment (see base class).

Return type
List[Any]

1.7. Vectorized Environments 33

Stable Baselines3 Documentation, Release 1.8.0

get_images()
Return RGB images from each environment
Return type
Sequence[ndarray]
reset()
Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Return type
Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]

Returns
observation
seed (seed=None)
Sets the random seeds for all environments, based on a given seed. Each individual environment will still

get its own seed, by incrementing the given seed.

Parameters
seed (Optional[int]) — The random seed. May be None for completely random seeding.

Return type
List[Optional[int]]

Returns
Returns a list containing the seeds for each individual env. Note that all list elements may be
None, if the env does not return anything when being seeded.
set_attr (attr_name, value, indices=None)
Set attribute inside vectorized environments (see base class).
Return type
None
step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.
You should not call this if a step_async run is already pending.

Return type
None
step_wait()
Wait for the step taken with step_async().
Return type

Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

Returns
observation, reward, done, information

34 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

1.7.5 Wrappers
VecFrameStack

class stable_baselines3.common.vec_env.VecFrameStack (venv, n_stack, channels_order=None)

Frame stacking wrapper for vectorized environment. Designed for image observations.
Parameters
* venv (VecEnv) — Vectorized environment to wrap
e n_stack (int) — Number of frames to stack

e channels_order (Union[str, Mapping[str, str], None]) — If “first”, stack on first image
dimension. If “last”, stack on last dimension. If None, automatically detect channel to stack
over in case of image observation or default to “last” (default). Alternatively channels_order
can be a dictionary which can be used with environments with Dict observation spaces

reset()
Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Return type
Union[ndarray, Dict[str, ndarray]]

Returns
observation
step_wait()
Wait for the step taken with step_async().
Return type

Tuple[Union[ndarray, Dict[str, ndarray]], ndarray, ndarray, List[Dict[str,
Any]]]

Returns
observation, reward, done, information

StackedObservations

class stable_baselines3.common.vec_env.stacked_observations.StackedObservations (num_envs,
n_stack,
observa-
tion_space,
chan-
nels_order=None)

Frame stacking wrapper for data.

Dimension to stack over is either first (channels-first) or last (channels-last), which is detected automatically
using common.preprocessing.is_image_space_channels_first if observation is an image space.

Parameters
e num_envs (int) — Number of environments
e n_stack (int) — Number of frames to stack

» observation_space (Union[Box, Dict]) — Environment observation space

1.7. Vectorized Environments 35

Stable Baselines3 Documentation, Release 1.8.0

e channels_order (Union[str, Mapping[str, Optional[str]], None]) — If “first”, stack
on first image dimension. If “last”, stack on last dimension. If None, automatically detect
channel to stack over in case of image observation or default to “last”. For Dict space, chan-
nels_order can also be a dictionary.

static compute_stacking(n_stack, observation_space, channels_order=None)

Calculates the parameters in order to stack observations
Parameters
¢ n_stack (int) — Number of observations to stack
¢ observation_space (Box) — Observation space
¢ channels_order (Optional[str]) — Order of the channels

Return type
Tuple[bool, int, Tuple[int, ...], int]

Returns
Tuple of channels_first, stack_dimension, stackedobs, repeat_axis

reset (observation)

Reset the stacked_obs, add the reset observation to the stack, and return the stack.

Parameters
observation (TypeVar(TObs, ndarray, Dict[str, ndarray])) — Reset observation

Return type
TypeVar(TObs, ndarray, Dict[str, ndarray])

Returns
The stacked reset observation

stack_observation_space (observation_space)
This function is deprecated.

As an alternative, use

low = np.repeat(observation_space.low, stacked_observation.n_stack,..
—,axis=stacked_observation.repeat_axis)

high = np.repeat(observation_space.high, stacked_observation.n_stack,..
—,axis=stacked_observation.repeat_axis)

stacked_observation_space = spaces.Box(low=low, high=high, dtype=observation_
—»space.dtype)

Return type
Union[Box, Dict]

Returns

New observation space with stacked dimensions

update (observations, dones, infos)

Add the observations to the stack and use the dones to update the infos.
Parameters
¢ observations (TypeVar(TObs, ndarray, Dict[str, ndarray])) — Observations
¢ dones (ndarray) — Dones

e infos (List[Dict[str, Any]]) — Infos

36 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

Return type
Tuple[TypeVar(TObs, ndarray, Dict[str, ndarray]), List[Dict[str, Any]]]

Returns
Tuple of the stacked observations and the updated infos

VecNormalize

class stable_baselines3.common.vec_env.VecNormalize (venv, training=True, norm_obs=True,
norm_reward=True, clip_obs=10.0,
clip_reward=10.0, gamma=0.99, epsilon=1e-08,
norm_obs_keys=None)

A moving average, normalizing wrapper for vectorized environment. has support for saving/loading moving
average,

Parameters
* venv (VecEnv) — the vectorized environment to wrap
* training (bool) — Whether to update or not the moving average
e norm_obs (bool) — Whether to normalize observation or not (default: True)
e norm_reward (bool) — Whether to normalize rewards or not (default: True)
e clip_obs (float) — Max absolute value for observation
e clip_reward (float) — Max value absolute for discounted reward
e gamma (float) — discount factor
* epsilon (float) — To avoid division by zero

* norm_obs_keys (Optional[List[str]]) — Which keys from observation dict to normalize.
If not specified, all keys will be normalized.

get_original_obs()

Returns an unnormalized version of the observations from the most recent step or reset.

Return type
Union[ndarray, Dict[str, ndarray]]

get_original_reward()

Returns an unnormalized version of the rewards from the most recent step.

Return type
ndarray

static load(load_path, venv)

Loads a saved VecNormalize object.
Parameters
¢ load_path (str) — the path to load from.
* venv (VecEnv) — the VecEnv to wrap.

Return type
VecNormalize

Returns

1.7. Vectorized Environments 37

Stable Baselines3 Documentation, Release 1.8.0

normalize_obs(0bs)

Normalize observations using this VecNormalize’s observations statistics. Calling this method does not
update statistics.

Return type
Union[ndarray, Dict[str, ndarray]]

normalize_reward(reward)

Normalize rewards using this VecNormalize’s rewards statistics. Calling this method does not update statis-
tics.

Return type
ndarray

reset()

Reset all environments :rtype: Union[ndarray, Dict[str, ndarray]] :return: first observation of the
episode

save (save_path)
Save current VecNormalize object with all running statistics and settings (e.g. clip_obs)

Parameters
save_path (str) — The path to save to

Return type
None

set_venv(venv)

Sets the vector environment to wrap to venv.
Also sets attributes derived from this such as num_env.

Parameters
venv (VecEnv) —

Return type
None

step_wait()

Apply sequence of actions to sequence of environments actions -> (observations, rewards, dones)
where dones is a boolean vector indicating whether each element is new.

Return type
Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

VecVideoRecorder
class stable_baselines3.common.vec_env.VecVideoRecorder (venv, video_folder, record_video_trigger,

video_length=200, name_prefix="rl-video")

Wraps a VecEnv or VecEnvWrapper object to record rendered image as mp4 video. It requires ffmpeg or avconv
to be installed on the machine.

Parameters
e venv (VecEnv) —

e video_folder (str) — Where to save videos

38 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

e record_video_trigger (Callable[[int], bool]) — Function that defines when to start
recording. The function takes the current number of step, and returns whether we should
start recording or not.

» video_length (int) — Length of recorded videos
e name_prefix (str) — Prefix to the video name

close()
Clean up the environment’s resources.

Return type
None

reset()
Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Return type
Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]

Returns
observation

step_wait()
Wait for the step taken with step_async().

Return type
Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

Returns
observation, reward, done, information

VecCheckNan
class stable_baselines3.common.vec_env.VecCheckNan(venv, raise_exception=False, warn_once=True,
check_inf=True)

NaN and inf checking wrapper for vectorized environment, will raise a warning by default, allowing you to know
from what the NaN of inf originated from.

Parameters
* venv (VecEnv) — the vectorized environment to wrap
» raise_exception (bool) — Whether to raise a ValueError, instead of a UserWarning
* warn_once (bool) — Whether to only warn once.
¢ check_inf (bool) — Whether to check for +inf or -inf as well

check_array_value (name, value)
Check for inf and NaN for a single numpy array.

Parameters
* name (str)— Name of the value being check

* value (ndarray) — Value (numpy array) to check

1.7. Vectorized Environments 39

Stable Baselines3 Documentation, Release 1.8.0

Return type
List[Tuple[str, str]]

Returns
A list of issues found.

reset()

Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Return type
Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]

Returns
observation

step_async (actions)

Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.

You should not call this if a step_async run is already pending.

Return type
None

step_wait()
Wait for the step taken with step_async().

Return type
Tuple[Union[ndarray,Dict[str, ndarray], Tuple[ndarray, ...]],ndarray, ndarray,
List[Dict]]

Returns
observation, reward, done, information

VecTransposelmage

class stable_baselines3.common.vec_env.VecTransposeImage (venv, skip=False)

Re-order channels, from HxWxC to CxHxW. It is required for PyTorch convolution layers.
Parameters
* venv (VecEnv) —

* skip (bool) — Skip this wrapper if needed as we rely on heuristic to apply it or not, which
may result in unwanted behavior, see GH issue #671.

close()

Clean up the environment’s resources.

Return type
None

reset()

Reset all environments

Return type
Union[ndarray, Dict]

40 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

step_wait()
Wait for the step taken with step_async().

Return type

Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

Returns
observation, reward, done, information

static transpose_image (image)
Transpose an image or batch of images (re-order channels).

Parameters
image (ndarray) —

Return type
ndarray

Returns

transpose_observations (observations)

Transpose (if needed) and return new observations.

Parameters
observations (Union[ndarray, Dict]) —

Return type
Union[ndarray, Dict]

Returns
Transposed observations

static transpose_space (observation_space, key="")

Transpose an observation space (re-order channels).
Parameters
¢ observation_space (Box) —

¢ key (str) — In case of dictionary space, the key of the observation space.

Return type
Box

Returns

VecMonitor

class stable_baselines3.common.vec_env.VecMonitor (venv, filename=None, info_keywords=())

A vectorized monitor wrapper for vectorized Gym environments, it is used to record the episode reward, length,
time and other data.

Some environments like openai/procgen or gym3 directly initialize the vectorized environments, without giving

us a chance to use the Monitor wrapper. So this class simply does the job of the Monitor wrapper on a vectorized
level.

Parameters
e venv (VecEnv) — The vectorized environment

» filename (Optional[str]) — the location to save a log file, can be None for no log

1.7. Vectorized Environments 41

https://github.com/openai/procgen
https://github.com/openai/gym3

Stable Baselines3 Documentation, Release 1.8.0

» info_keywords (Tuple[str, .. .]) — extra information to log, from the information return
of env.step()

close()

Clean up the environment’s resources.

Return type
None

reset()

Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

Return type
Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]

Returns
observation

step_wait()
Wait for the step taken with step_async().

Return type
Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

Returns
observation, reward, done, information

VecExtractDictObs

class stable_baselines3.common.vec_env.VecExtractDictObs (venv, key)

A vectorized wrapper for extracting dictionary observations.
Parameters
e venv (VecEnv) — The vectorized environment
* key (str) — The key of the dictionary observation

reset()
Reset all the environments and return an array of observations, or a tuple of observation arrays.
If step_async is still doing work, that work will be cancelled and step_wait() should not be called until

step_async() is invoked again.

Return type
ndarray

Returns
observation
step_wait()
Wait for the step taken with step_async().
Return type

Tuple[Union[ndarray,Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray,
List[Dict]]

42 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

Returns
observation, reward, done, information

1.8 Policy Networks

Stable Baselines3 provides policy networks for images (CnnPolicies), other type of input features (MlpPolicies) and
multiple different inputs (MultilnputPolicies).

Warning: For A2C and PPO, continuous actions are clipped during training and testing (to avoid out of bound
error). SAC, DDPG and TD3 squash the action, using a tanh() transformation, which handles bounds more
correctly.

1.8.1 SB3 Policy

SB3 networks are separated into two mains parts (see figure below):

A features extractor (usually shared between actor and critic when applicable, to save computation) whose role
is to extract features (i.e. convert to a feature vector) from high-dimensional observations, for instance, a CNN
that extracts features from images. This is the features_extractor_class parameter. You can change the
default parameters of that features extractor by passing a features_extractor_kwargs parameter.

e A (fully-connected) network that maps the features to actions/value. Its architecture is controlled by the
net_arch parameter.

Note: All observations are first pre-processed (e.g. images are normalized, discrete obs are converted to one-hot
vectors, ...) before being fed to the features extractor. In the case of vector observations, the features extractor is just
a Flatten layer.

features_extractor net_arch

Fe_od'ure,s Ful lt/- C_onnected
Extroactor Network

Observation action or valve

con be P"*"H““‘f shared
shared BL’/ Je,pau[+ between actor/eritic
between actor/aritic networks for on-lool?ct/
networks altjor‘?-qu\S

1.8. Policy Networks 43

Stable Baselines3 Documentation, Release 1.8.0

SB3 policies are usually composed of several networks (actor/critic networks + target networks when applicable) to-
gether with the associated optimizers.

Each of these network have a features extractor followed by a fully-connected network.

Note: When we refer to “policy” in Stable-Baselines3, this is usually an abuse of language compared to RL terminol-
ogy. In SB3, “policy” refers to the class that handles all the networks useful for training, so not only the network used
to predict actions (the “learned controller”).

Stable Baselines3 PolicyW

+ optimizer(s)

+ target networks (when apphco\ble)

U n RL Ii-f-erod-ure_, "Pohcy"
refers +o the actor onlcﬁ
+he panrt t+hot pre_plic*'s actions

Critic AMetwork

1.8.2 Default Network Architecture

The default network architecture used by SB3 depends on the algorithm and the observation space. You can visualize
the architecture by printing model .policy (see issue #329).

For 1D observation space, a 2 layers fully connected net is used with:
* 64 units (per layer) for PPO/A2C/DQN
* 256 units for SAC
* [400, 300] units for TD3/DDPG (values are taken from the original TD3 paper)

For image observation spaces, the “Nature CNN” (see code for more details) is used for feature extraction, and SAC/TD3
also keeps the same fully connected network after it. The other algorithms only have a linear layer after the CNN.
The CNN is shared between actor and critic for A2C/PPO (on-policy algorithms) to reduce computation. Off-policy

44 Chapter 1. Main Features

https://github.com/DLR-RM/stable-baselines3/issues/329

Stable Baselines3 Documentation, Release 1.8.0

algorithms (TD3, DDPG, SAC, ...) have separate feature extractors: one for the actor and one for the critic, since the
best performance is obtained with this configuration.

For mixed observations (dictionary observations), the two architectures from above are used, i.e., CNN for images and
then two layers fully-connected network (with a smaller output size for the CNN).

1.8.3 Custom Network Architecture

One way of customising the policy network architecture is to pass arguments when creating the model, using
policy_kwargs parameter:

Note: An extra linear layer will be added on top of the layers specified in net_arch, in order to have the right output
dimensions and activation functions (e.g. Softmax for discrete actions).

In the following example, as CartPole’s action space has a dimension of 2, the final dimensions of the net_arch’s
layers will be:

obs
<4>
/ \
<32> <32>
I I
<32> <32>
I I
<2> <1>
action value
import gym

import torch as th
from stable_baselines3 import PPO

Custom actor (pi) and value function (vf) networks
of two layers of size 32 each with Relu activation function
Note: an extra linear layer will be added on top of the pi and the vf nets,.
—respectively
policy_kwargs = dict(activation_fn=th.nn.RelU,
net_arch=dict(pi=[32, 32], vf=[32, 32]))
Create the agent
model = PPO("MlpPolicy", "CartPole-v1", policy_kwargs=policy_kwargs, verbose=1)
Retrieve the environment
env = model.get_env()
Train the agent
model.learn(total_timesteps=20_000)
Save the agent
model . save("'ppo_cartpole™)

del model
the policy_kwargs are automatically loaded
model = PPO.load("ppo_cartpole", env=env)

1.8. Policy Networks 45

Stable Baselines3 Documentation, Release 1.8.0

1.8.4 Custom Feature Extractor

If you want to have a custom features extractor (e.g. custom CNN when using images), you can define class that derives
from BaseFeaturesExtractor and then pass it to the model when training.

Note: For on-policy algorithms, the features extractor is shared by default between the actor and the critic to save
computation (when applicable). However, this can be changed setting share_features_extractor=False in the
policy_kwargs (both for on-policy and off-policy algorithms)

import torch as th
import torch.nn as nn
from gym import spaces

from stable_baselines3 import PPO
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

class CustomCNN(BaseFeaturesExtractor):
:param observation_space: (gym.Space)
:param features_dim: (int) Number of features extracted.
This corresponds to the number of unit for the last layer.

o

def __init__(self, observation_space: spaces.Box, features_dim: int = 256):
super().__init__(observation_space, features_dim)
We assume CxHxW images (channels first)
Re-ordering will be done by pre-preprocessing or wrapper
n_input_channels = observation_space.shape[0]
self.cnn = nn.Sequential(
nn.Conv2d(n_input_channels, 32, kernel_size=8, stride=4, padding=0),
nn.RelLUQ),
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),
nn.RelLUQ),
nn.Flatten(Q),

Compute shape by doing one forward pass
with th.no_grad(Q):
n_flatten = self.cnn(
th.as_tensor(observation_space.sample() [None]).float()
) .shape[1]

self.linear = nn.Sequential(nn.Linear(n_flatten, features_dim), nn.ReLUQ))

def forward(self, observations: th.Tensor) -> th.Tensor:
return self.linear(self.cnn(observations))

policy_kwargs = dict(
features_extractor_class=CustomCNN,
features_extractor_kwargs=dict(features_dim=128),

(continues on next page)

46 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

model = PPO("CnnPolicy", "BreakoutNoFrameskip-v4", policy_kwargs=policy_kwargs,.
—verbose=1)
model .learn(1000)

1.8.5 Multiple Inputs and Dictionary Observations

Stable Baselines3 supports handling of multiple inputs by using Dict Gym space. This can be done using
MultiInputPolicy, which by default uses the CombinedExtractor features extractor to turn multiple inputs into a
single vector, handled by the net_arch network.

By default, CombinedExtractor processes multiple inputs as follows:

1. If input is an image (automatically detected, see common.preprocessing.is_image_space), process image
with Nature Atari CNN network and output a latent vector of size 256.

2. If input is not an image, flatten it (no layers).
3. Concatenate all previous vectors into one long vector and pass it to policy.

Much like above, you can define custom features extractors. The following example assumes the environment has two
keys in the observation space dictionary: “image” is a (1,H,W) image (channel first), and “vector” is a (D,) dimensional
vector. We process “image” with a simple downsampling and “vector” with a single linear layer.

import gym
import torch as th
from torch import nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

class CustomCombinedExtractor(BaseFeaturesExtractor):
def __init__(self, observation_space: spaces.Dict):
We do not know features-dim here before going over all the items,
so put something dummy for now. PyTorch requires calling
nn.Module.__init__ before adding modules
super().__init__(observation_space, features_dim=1)

extractors = {}

total_concat_size = 0

We need to know size of the output of this extractor,

so go over all the spaces and compute output feature sizes
for key, subspace in observation_space.spaces.items():

if key == "image":
We will just downsample one channel of the image by 4x4 and flatten.
Assume the image is single-channel (subspace.shape[0] == 0)

extractors[key] = nn.Sequential(nn.MaxPool2d(4), nn.Flatten())

total_concat_size += subspace.shape[l] // 4 * subspace.shape[2] // 4
elif key == "vector":

Run through a simple MLP

extractors[key] = nn.Linear(subspace.shape[0], 16)

total_concat_size += 16

self.extractors = nn.ModuleDict(extractors)

(continues on next page)

1.8. Policy Networks 47

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

Update the features dim manually
self._features_dim = total_concat_size

def forward(self, observations) -> th.Tensor:
encoded_tensor_list = []

self.extractors contain nn.Modules that do all the processing.

for key, extractor in self.extractors.items():
encoded_tensor_list.append(extractor(observations[key]))

Return a (B, self._features_dim) PyTorch tensor, where B is batch dimension.

return th.cat(encoded_tensor_list, dim=1)

1.8.6 On-Policy Algorithms

Custom Networks

If you need a network architecture that is different for the actor and the critic when using PPO, A2C or TRPO, you can pass
a dictionary of the following structure: dict(pi=[<actor network architecture>], vf=[<critic network
architecture>]).

For example, if you want a different architecture for the actor (aka pi) and the critic (value-function aka vf) networks,
then you can specify net_arch=dict(pi=[32, 32], vf=[64, 64]).

Otherwise, to have actor and critic that share the same network architecture, you only need to specify net_arch=[128,
128] (here, two hidden layers of 128 units each, this is equivalent to net_arch=dict(pi=[128, 128], v{=[128,
128D1).

If shared layers are needed, you need to implement a custom policy network (see advanced example below).

Examples

Same architecture for actor and critic with two layers of size 128: net_arch=[128, 128]

obs
/ \
<128> <128>
I I
<128> <128>
I I
action value

Different architectures for actor and critic: net_arch=dict(pi=[32, 32], vf=[64, 64])

obs
/ \
<32> <64>
I I
<32> <64>
I I
action value
48 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

Advanced Example

If your task requires even more granular control over the policy/value architecture, you can redefine the policy directly:

from typing import Callable, Dict, List, Optional, Tuple, Type, Union

from gym import spaces
import torch as th
from torch import nn

from stable_baselines3 import PPO
from stable_baselines3.common.policies import ActorCriticPolicy

class CustomNetwork(nn.Module):
Custom network for policy and value function.
It receives as input the features extracted by the features extractor.

:param feature_dim: dimension of the features extracted with the features_extractor.
—(e.g. features from a CNN)

:param last_layer_dim_pi: (int) number of units for the last layer of the policy.
—network

:param last_layer_dim_vf: (int) number of units for the last layer of the value.
—network

o

def __init__(
self,
feature_dim: int,
last_layer_dim_pi: int 64,
last_layer_dim_vf: int = 64,

super().__init__Q

IMPORTANT:

Save output dimensions, used to create the distributions
self.latent_dim_pi = last_layer_dim_pi

self.latent_dim vf = last_layer_dim vf

Policy network
self.policy_net = nn.Sequential(
nn.Linear(feature_dim, last_layer_dim_pi), nn.ReLUQ)
)
Value network
self.value_net = nn.Sequential(
nn.Linear(feature_dim, last_layer_dim_vf), nn.ReLUQ)

)

def forward(self, features: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:

o

:return: (th.Tensor, th.Tensor) latent_policy, latent_value of the specified.
—network.

(continues on next page)

1.8. Policy Networks 49

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

If all layers are shared, then “‘latent_policy == latent_value™

o

return self.forward_actor(features), self.forward_critic(features)

def forward_actor(self, features: th.Tensor) -> th.Tensor:
return self.policy_net(features)

def forward_critic(self, features: th.Tensor) -> th.Tensor:
return self.value_net(features)

class CustomActorCriticPolicy(ActorCriticPolicy):

def __init__(
self,
observation_space: spaces.Space,
action_space: spaces.Space,
1r_schedule: Callable[[float], float],
*args,
**kwargs,

super().__init__(
observation_space,
action_space,
1r_schedule,
Pass remaining arguments to base class
*args,
**kwargs,
)
Disable orthogonal initialization
self.ortho_init = False

def _build_mlp_extractor(self) -> None:

self.mlp_extractor = CustomNetwork(self.features_dim)

model = PPO(CustomActorCriticPolicy, "CartPole-v1", verbose=1)
model.learn(5000)

1.8.7 Off-Policy Algorithms

If you need a network architecture that is different for the actor and the critic when using SAC, DDPG, TQC or TD3, you
can pass a dictionary of the following structure: dict(pi=[<actor network architecture>], qf=[<critic
network architecture>]).

For example, if you want a different architecture for the actor (aka pi) and the critic (Q-function aka qf) networks,
then you can specify net_arch=dict(pi=[64, 64], qf=[400, 300]).

Otherwise, to have actor and critic that share the same network architecture, you only need to specify net_arch=[256,
256] (here, two hidden layers of 256 units each).

Note: For advanced customization of off-policy algorithms policies, please take a look at the code. A good under-

50 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

standing of the algorithm used is required, see discussion in issue #425

from stable_baselines3 import SAC

Custom actor architecture with two layers of 64 units each

Custom critic architecture with two layers of 400 and 300 units
policy_kwargs = dict(net_arch=dict(pi=[64, 64], qf=[400, 300]))

Create the agent

model = SAC("MlpPolicy", "Pendulum-v1", policy_kwargs=policy_kwargs, verbose=1)
model . learn(5000)

1.9 Using Custom Environments

To use the RL baselines with custom environments, they just need to follow the gym interface. That is to say, your
environment must implement the following methods (and inherits from OpenAl Gym Class):

Note:

If you are using images as input, the observation must be of type np.uint8 and be contained in [0, 255].
By default, the observation is normalized by SB3 pre-processing (dividing by 255 to have values in [0, 1])
when using CNN policies. Images can be either channel-first or channel-last.

If you want to use CnnPolicy or MultiInputPolicy with image-like observation (3D tensor) that are already

normalized, you must pass normalize_images=False
to the policy (using policy_kwargs parameter, policy_kwargs=dict (normalize_images=False)) and

make sure your image is in the channel-first format.

Note: Although SB3 supports both channel-last and channel-first images as input, we recommend using the channel-
first convention when possible. Under the hood, when a channel-last image is passed, SB3 uses a VecTransposeImage
wrapper to re-order the channels.

import gym
import numpy as np
from gym import spaces

class CustomEnv(gym.Env):
"""Custom Environment that follows gym interface.

o

metadata = {"render.modes": ["human"]}

def __init__(self, argl, arg2, ...):
super().__init__Q
Define action and observation space
They must be gym.spaces objects
Example when using discrete actions:
self.action_space = spaces.Discrete(N_DISCRETE_ACTIONS)
Example for using image as input (channel-first; channel-last also works):
self.observation_space = spaces.Box(low=0, high=255,

(continues on next page)

1.9. Using Custom Environments 51

https://github.com/DLR-RM/stable-baselines3/issues/425

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

shape=(N_CHANNELS, HEIGHT, WIDTH), dtype=np.
—uint8)

def step(self, action):
I-'t.eéurn observation, reward, done, info
def reset(self):
.';'t.e'.curn observation # reward, done, info can't be included

def render(self, mode="human"):

def close(self):

Then you can define and train a RL agent with:

Instantiate the env

env = CustomEnv(argl, ...)

Define and Train the agent

model = A2C("CnnPolicy", env).learn(total_timesteps=1000)

To check that your environment follows the Gym interface that SB3 supports, please use:

from stable_baselines3.common.env_checker import check_env

env = CustomEnv(argl, ...)
It will check your custom environment and output additional warnings if needed
check_env(env)

Gym also have its own env checker but it checks a superset of what SB3 supports (SB3 does not support all Gym
features).

We have created a colab notebook for a concrete example on creating a custom environment along with an example of
using it with Stable-Baselines3 interface.

Alternatively, you may look at OpenAl Gym built-in environments. However, the readers are cautioned as per OpenAl
Gym official wiki, its advised not to customize their built-in environments. It is better to copy and create new ones if
you need to modify them.

Optionally, you can also register the environment with gym, that will allow you to create the RL agent in one line (and
use gym.make () to instantiate the env):

from gym.envs.registration import register
Example for the CartPole environment
register(
unique identifier for the env "name-version’
id="CartPole-v1",
path to the class for creating the env
Note: entry_point also accept a class as input (and not only a string)
entry_point="gym.envs.classic_control:CartPoleEnv",
Max number of steps per episode, using a ‘TimeLimitWrapper"

(continues on next page)

52 Chapter 1. Main Features

https://www.gymlibrary.ml/content/api/#checking-api-conformity
https://colab.research.google.com/github/araffin/rl-tutorial-jnrr19/blob/master/5_custom_gym_env.ipynb
https://www.gymlibrary.ml/
https://github.com/openai/gym/wiki/FAQ

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

max_episode_steps=500,

In the project, for testing purposes, we use a custom environment named IdentityEnv defined in this file. An example
of how to use it can be found here.

1.10 Callbacks

A callback is a set of functions that will be called at given stages of the training procedure. You can use callbacks to
access internal state of the RL model during training. It allows one to do monitoring, auto saving, model manipulation,
progress bars, ...

1.10.1 Custom Callback

To build a custom callback, you need to create a class that derives from BaseCallback. This will give you access to
events (_on_training_start, _on_step) and useful variables (like self.model for the RL model).

You can find two examples of custom callbacks in the documentation: one for saving the best model according to the
training reward (see Examples), and one for logging additional values with Tensorboard (see Tensorboard section).

from stable_baselines3.common.callbacks import BaseCallback

class CustomCallback(BaseCallback):

e

A custom callback that derives from “‘BaseCallback™.

:param verbose: Verbosity level: 0 for no output, 1 for info messages, 2 for debug.
—messages
def __init__(self, verbose=0):
super (CustomCallback, self).__init__(verbose)
Those variables will be accessible in the callback
(they are defined in the base class)
The RL model
self.model = None # type: BaseAlgorithm
An alias for self.model.get_env(), the environment used for training
self.training_env = None # type: Union[gym.Env, VecEnv, None]
Number of time the callback was called
self.n_calls = 0 # type: int
self.num_timesteps = 0 # type: int
local and global variables
self.locals = None # type: Dict[str, Any]
self.globals = None # type: Dict[str, Any]
The logger object, used to report things in the terminal
self.logger = None # stable_baselines3.common.logger
Sometimes, for event callback, it is useful
to have access to the parent object
self.parent = None # type: Optional[BaseCallback]

HHOoR O OO W W P P WO W W R R R W

(continues on next page)

1.10. Callbacks 53

https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/envs/identity_env.py
https://github.com/DLR-RM/stable-baselines3/blob/master/tests/test_identity.py

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

def _on_training_start(self) -> None:

i

This method is called before the first rollout starts.

i

pass

def _on_rollout_start(self) -> None:

i

A rollout is the collection of environment interaction

using the current policy.
This event is triggered before collecting new samples.

e

pass

def _on_step(self) -> bool:

o

This method will be called by the model after each call to ‘env.step()".

For child callback (of an ‘EventCallback’), this will be called

when the event is triggered.

:return: (bool) If the callback returns False, training is aborted early.

o

return True

def _on_rollout_end(self) -> None:

e

This event is triggered before updating the policy.

e

pass

def _on_training_end(self) -> None:

e

This event is triggered before exiting the ‘learn()" method.

i

pass

Note: self.num_timesteps corresponds to the total number of steps taken in the environment, i.e., it is the number
of environments multiplied by the number of time env.step() was called

For the other algorithms, self.num_timesteps is incremented by n_envs (number of environments) after each call

to env.step()

Note: For off-policy algorithms like SAC, DDPG, TD3 or DQN, the notion of rollout corresponds to the steps taken

in the environment between two updates.

54 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

1.10.2 Event Callback

Compared to Keras, Stable Baselines provides a second type of BaseCallback, named EventCallback that is meant
to trigger events. When an event is triggered, then a child callback is called.

As an example, EvalCallback is an EventCallback that will trigger its child callback when there is a new best model.
A child callback is for instance StopTrainingOnRewardThreshold that stops the training if the mean reward achieved
by the RL model is above a threshold.

Note: We recommend to take a look at the source code of EvalCallback and StopTraining OnRewardThreshold to have
a better overview of what can be achieved with this kind of callbacks.

class EventCallback(BaseCallback):

e

Base class for triggering callback on event.

:param callback: (Optional[BaseCallback]) Callback that will be called
when an event is triggered.
:param verbose: Verbosity level: 0 for no output, 1 for info messages, 2 for debug.
—,messages
def __init__(self, callback: Optional[BaseCallback] = None, verbose: int = 0):
super (EventCallback, self).__init__(verbose=verbose)
self.callback = callback
Give access to the parent
if callback is not None:
self.callback.parent = self

def _on_event(self) -> bool:
if self.callback is not None:
return self.callback()
return True

1.10.3 Callback Collection

Stable Baselines provides you with a set of common callbacks for:
* saving the model periodically (CheckpointCallback)
* evaluating the model periodically and saving the best one (EvalCallback)
¢ chaining callbacks (CallbackList)
* triggering callback on events (Event Callback, EveryNTimesteps)

* stopping the training early based on a reward threshold (StopTrainingOnRewardThreshold)

1.10. Callbacks 55

Stable Baselines3 Documentation, Release 1.8.0

CheckpointCallback

Callback for saving a model every save_freq calls to env.step(), you must specify a log folder (save_path)
and optionally a prefix for the checkpoints (r1_model by default). If you are using this callback to stop and resume
training, you may want to optionally save the replay buffer if the model has one (save_replay_buffer, False by
default). Additionally, if your environment uses a VecNormalize wrapper, you can save the corresponding statistics
using save_vecnormalize (False by default).

Warning: When using multiple environments, each call to env.step() will effectively correspond to n_envs
steps. If you want the save_freq to be similar when using different number of environments, you need to account
for it using save_freq = max(save_freq // n_envs, 1). The same goes for the other callbacks.

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import CheckpointCallback

Save a checkpoint every 1000 steps
checkpoint_callback = CheckpointCallback(
save_freq=1000,
save_path="./logs/",
name_prefix="rl_model",
save_replay_buffer=True,
save_vecnormalize=True,

)

model = SAC("MlpPolicy", "Pendulum-v1'")
model.learn(2000, callback=checkpoint_callback)

EvalCallback

Evaluate periodically the performance of an agent, using a separate test environment. It will save the best model if
best_model_save_path folder is specified and save the evaluations results in a numpy archive (evaluations.npz)
if 1log_path folder is specified.

Note: You can pass child callbacks via callback_after_eval and callback_on_new_best arguments.
callback_after_eval will be triggered after every evaluation, and callback_on_new_best will be triggered each
time there is a new best model.

Warning: You need to make sure that eval_env is wrapped the same way as the training environment, for
instance using the VecTransposeImage wrapper if you have a channel-last image as input. The EvalCallback
class outputs a warning if it is not the case.

import gym

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import EvalCallback

Separate evaluation env

(continues on next page)

56 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

eval_env = gym.make("Pendulum-v1™)

Use deterministic actions for evaluation

eval_callback = EvalCallback(eval_env, best_model_save_path="./logs/",
log_path="./logs/", eval_freq=500,
deterministic=True, render=False)

model = SAC("MlpPolicy", "Pendulum-v1'")
model.learn(5000, callback=eval_callback)

ProgressBarCallback

Display a progress bar with the current progress, elapsed time and estimated remaining time. This callback is integrated
inside SB3 via the progress_bar argument of the 1earn() method.

Note: This callback requires tqdm and rich packages to be installed. This is done automatically when using pip
install stable-baselines3[extra]

from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import ProgressBarCallback

model = PPO("MlpPolicy", "Pendulum-v1'")

Display progress bar using the progress bar callback

this is equivalent to model.learn(100_000, callback=ProgressBarCallback())
model.learn(100_000, progress_bar=True)

CallbackList

Class for chaining callbacks, they will be called sequentially. Alternatively, you can pass directly a list of callbacks to
the learn() method, it will be converted automatically to a CallbackList.

import gym

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import CallbackList, CheckpointCallback,..
—EvalCallback

checkpoint_callback = CheckpointCallback(save_freq=1000, save_path="./logs/")

Separate evaluation env

eval_env = gym.make("Pendulum-v1™)

eval_callback = EvalCallback(eval_env, best_model_save_path="./logs/best_model",
log_path="./logs/results", eval_freq=500)

Create the callback list

callback = CallbackList([checkpoint_callback, eval_callback])

model = SAC("MlpPolicy", "Pendulum-v1")

Equivalent to:

model.learn(5000, callback=[checkpoint_callback, eval_callback])
model . learn(5000, callback=callback)

1.10. Callbacks 57

Stable Baselines3 Documentation, Release 1.8.0

StopTrainingOnRewardThreshold

Stop the training once a threshold in episodic reward (mean episode reward over the evaluations) has been reached (i.e.,
when the model is good enough). It must be used with the EvalCallback and use the event triggered by a new best
model.

import gym

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import EvalCallback,.
—StopTrainingOnRewardThreshold

Separate evaluation env

eval_env = gym.make("Pendulum-v1™)

Stop training when the model reaches the reward threshold

callback_on_best = StopTrainingOnRewardThreshold(reward_threshold=-200, verbose=1)
eval_callback = EvalCallback(eval_env, callback_on_new_best=callback_on_best, verbose=1)

model = SAC("MlpPolicy", "Pendulum-v1", verbose=1)

Almost infinite number of timesteps, but the training will stop
early as soon as the reward threshold is reached
model.learn(int(lel®), callback=eval_callback)

EveryNTimesteps

An Event Callback that will trigger its child callback every n_steps timesteps.

Note: Because of the way PPO1 and TRPO work (they rely on MPI), n_steps is a lower bound between two events.

import gym

from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import CheckpointCallback, EveryNTimesteps

this is equivalent to defining CheckpointCallback(save_freq=500)

checkpoint_callback will be triggered every 500 steps
checkpoint_on_event = CheckpointCallback(save_freq=1, save_path="./logs/")
event_callback = EveryNTimesteps(n_steps=500, callback=checkpoint_on_event)

model = PPO("MlpPolicy", "Pendulum-v1", verbose=1)

model .learn(int(2e4), callback=event_callback)

58 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

StopTrainingOnMaxEpisodes

Stop the training upon reaching the maximum number of episodes, regardless of the model’s total_timesteps
value. Also, presumes that, for multiple environments, the desired behavior is that the agent trains on each env for
max_episodes and in total for max_episodes * n_envs episodes.

1o

Note: For multiple environments, the agent will train for a total of max_episodes * n_envs episodes. However, it
can’t be guaranteed that this training will occur for an exact number of max_episodes per environment. Thus, there
is an assumption that, on average, each environment ran for max_episodes.

from stable_baselines3 import A2C
from stable_baselines3.common.callbacks import StopTrainingOnMaxEpisodes

Stops training when the model reaches the maximum number of episodes
callback_max_episodes = StopTrainingOnMaxEpisodes(max_episodes=5, verbose=1)

model = A2C("MlpPolicy", "Pendulum-v1", verbose=1)

Almost infinite number of timesteps, but the training will stop
early as soon as the max number of episodes is reached
model.learn(int(1el0), callback=callback_max_episodes)

StopTrainingOnNoModellmprovement

Stop the training if there is no new best model (no new best mean reward) after more than a specific number of consec-
utive evaluations. The idea is to save time in experiments when you know that the learning curves are somehow well
behaved and, therefore, after many evaluations without improvement the learning has probably stabilized. It must be
used with the EvalCallback and use the event triggered after every evaluation.

import gym

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import EvalCallback,.
—StopTrainingOnNoModel Improvement

Separate evaluation env

eval_env = gym.make("Pendulum-v1")

Stop training if there is no improvement after more than 3 evaluations
stop_train_callback = StopTrainingOnNoModelImprovement (max_no_improvement_evals=3, min_
—evals=5, verbose=1)

eval_callback = EvalCallback(eval_env, eval_freq=1000, callback_after_eval=stop_train_
—callback, verbose=1)

model = SAC("MlpPolicy", "Pendulum-v1", learning _rate=1le-3, verbose=1)
Almost infinite number of timesteps, but the training will stop early
as soon as the the number of consecutive evaluations without model

improvement is greater than 3

model.learn(int(lel0), callback=eval_callback)

class stable_baselines3.common.callbacks.BaseCallback(verbose=0)
Base class for callback.

1.10. Callbacks 59

Stable Baselines3 Documentation, Release 1.8.0

Parameters
verbose (int) — Verbosity level: 0 for no output, 1 for info messages, 2 for debug messages

init_callback(model)
Initialize the callback by saving references to the RL model and the training environment for convenience.

Return type
None

on_step()
This method will be called by the model after each call to env.step().

For child callback (of an EventCallback), this will be called when the event is triggered.

Return type
bool

Returns
If the callback returns False, training is aborted early.
update_child_locals(locals_)
Update the references to the local variables on sub callbacks.

Parameters
locals - the local variables during rollout collection

Return type
None
update_locals (locals_)
Update the references to the local variables.

Parameters
locals - the local variables during rollout collection

Return type
None

class stable_baselines3.common.callbacks.CallbackList (callbacks)
Class for chaining callbacks.

Parameters
callbacks (List[BaseCallback]) — A list of callbacks that will be called sequentially.

update_child_locals(locals_)

Update the references to the local variables.

Parameters
locals - the local variables during rollout collection

Return type
None

class stable_baselines3.common.callbacks.CheckpointCallback(save_freq, save_path,
name_prefix="rl_model',
save_replay_buffer=False,
save_vecnormalize=Fulse,
verbose=0)

Callback for saving a model every save_freq calls to env.step(). By default, it only saves model check-
points, you need to pass save_replay_buffer=True, and save_vecnormalize=True to also save replay
buffer checkpoints and normalization statistics checkpoints.

60 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

Warning:

n_envs steps. To account for that, you can use save_freq = max(save_freq // n_envs, 1)

When using multiple environments, each call to env.step() will effectively correspond to

Parameters

save_freq (int) — Save checkpoints every save_freq call of the callback.
save_path (str) — Path to the folder where the model will be saved.
name_prefix (str) — Common prefix to the saved models
save_replay_buffer (bool) — Save the model replay buffer
save_vecnormalize (bool) — Save the VecNormalize statistics

verbose (int) — Verbosity level: O for no output, 2 for indicating when saving model check-
point

class stable_baselines3.common.callbacks.ConvertCallback(callback, verbose=0)

Convert functional callback (old-style) to object.

Parameters

callback (Callable[[Dict[str, Any], Dict[str, Any]], bool]) —

verbose (int) — Verbosity level: 0 for no output, 1 for info messages, 2 for debug messages

class stable_baselines3.common.callbacks.EvalCallback(eval_env, callback_on_new_best=None,

callback_after_eval=None,
n_eval_episodes=5, eval_freq=10000,
log_path=None,
best_model_save_path=None,
deterministic=True, render=False,
verbose=1, warn=True)

Callback for evaluating an agent.

Warning:

n_envs steps. To account for that, you can use eval_freq = max(eval_freq // n_envs, 1)

When using multiple environments, each call to env.step() will effectively correspond to

Parameters

eval_env (Union[Env, VecEnv]) — The environment used for initialization

callback_on_new_best (Optional[BaseCallback]) - Callback to trigger when there is
a new best model according to the mean_reward

callback_after_eval (Optional[BaseCallback]) — Callback to trigger after every
evaluation

n_eval_episodes (int) — The number of episodes to test the agent
eval_freq (int) — Evaluate the agent every eval_freq call of the callback.

log_path (Optional[str]) — Path to a folder where the evaluations (evaluations.npz)
will be saved. It will be updated at each evaluation.

best_model_save_path (Optional[str]) — Path to a folder where the best model accord-
ing to performance on the eval env will be saved.

1.10. Callbacks

61

Stable Baselines3 Documentation, Release 1.8.0

e deterministic (bool) — Whether the evaluation should use a stochastic or deterministic
actions.

» render (bool) — Whether to render or not the environment during evaluation

» verbose (int) — Verbosity level: 0 for no output, 1 for indicating information about evalu-
ation results

* warn (bool) —Passed to evaluate_policy (warnsif eval_env has not been wrapped with

a Monitor wrapper)

update_child_locals(locals_)

Update the references to the local variables.

Parameters
locals - the local variables during rollout collection

Return type
None

class stable_baselines3.common.callbacks.EventCallback(callback=None, verbose=0)

Base class for triggering callback on event.
Parameters

» callback (Optional[BaseCallback]) — Callback that will be called when an event is
triggered.

» verbose (int) — Verbosity level: 0 for no output, 1 for info messages, 2 for debug messages

init_callback (model)

Initialize the callback by saving references to the RL model and the training environment for convenience.

Return type
None

update_child_locals(locals_)

Update the references to the local variables.

Parameters
locals - the local variables during rollout collection

Return type
None

class stable_baselines3.common.callbacks.EveryNTimesteps (n_steps, callback)
Trigger a callback every n_steps timesteps

Parameters
* n_steps (int) — Number of timesteps between two trigger.
» callback (BaseCallback) — Callback that will be called when the event is triggered.

class stable_baselines3.common.callbacks.ProgressBarCallback
Display a progress bar when training SB3 agent using tqdm and rich packages.

class stable_baselines3.common.callbacks.StopTrainingOnMaxEpisodes (max_episodes, verbose=0)
Stop the training once a maximum number of episodes are played.

For multiple environments presumes that, the desired behavior is that the agent trains on each env for

max_episodes and in total for max_episodes * n_envs episodes.

62 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

Parameters
* max_episodes (int) — Maximum number of episodes to stop training.

» verbose (int) — Verbosity level: 0 for no output, 1 for indicating information about when
training ended by reaching max_episodes

class stable_baselines3.common.callbacks.StopTrainingOnNoModelImprovement (max_no_improvement_evals,
min_evals=0,
verbose=0)

Stop the training early if there is no new best model (new best mean reward) after more than N consecutive
evaluations.

It is possible to define a minimum number of evaluations before start to count evaluations without improvement.
It must be used with the EvalCallback.
Parameters

e max_no_improvement_evals (int) — Maximum number of consecutive evaluations with-
out a new best model.

e min_evals (int) — Number of evaluations before start to count evaluations without im-
provements.

* verbose (int) — Verbosity level: O for no output, 1 for indicating when training ended
because no new best model

class stable_baselines3.common.callbacks.StopTrainingOnRewardThreshold (reward_threshold,
verbose=0)

Stop the training once a threshold in episodic reward has been reached (i.e. when the model is good enough).
It must be used with the EvalCallback.
Parameters
» reward_threshold (float) — Minimum expected reward per episode to stop training.

» verbose (int) — Verbosity level: 0 for no output, 1 for indicating when training ended
because episodic reward threshold reached

1.11 Tensorboard Integration

1.11.1 Basic Usage

To use Tensorboard with stable baselines3, you simply need to pass the location of the log folder to the RL agent:

from stable_baselines3 import A2C

model = A2C("MlpPolicy", "CartPole-vl1", verbose=1, tensorboard_log="./a2c_cartpole_
—tensorboard/")
model.learn(total_timesteps=10_000)

You can also define custom logging name when training (by default it is the algorithm name)

from stable_baselines3 import A2C

model = A2C("MlpPolicy", "CartPole-v1", verbose=1, tensorboard_log="./a2c_cartpole_

(continues on next page)

1.11. Tensorboard Integration 63

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

—tensorboard/")

model .learn(total_timesteps=10_000, tb_log_name="first_run")

Pass reset_num_timesteps=False to continue the training curve in tensorboard

By default, it will create a new curve

Keep tb_log_name constant to have continuous curve (see note below)
model.learn(total_timesteps=10_000, tb_log_name="second_run", reset_num_timesteps=False)
model.learn(total_timesteps=10_000, tb_log_name="third_run", reset_num_timesteps=False)

Note: If you specify different tb_log_name in subsequent runs, you will have split graphs, like in the figure below.
If you want them to be continuous, you must keep the same th_log_name (see issue #975). And, if you still managed
to get your graphs split by other means, just put tensorboard log files into the same folder.

Once the learn function is called, you can monitor the RL agent during or after the training, with the following bash
command:

tensorboard --logdir ./a2c_cartpole_tensorboard/

Note: You can find explanations about the logger output and names in the Logger section.

you can also add past logging folders:

tensorboard --logdir ./a2c_cartpole_tensorboard/;./ppo2_cartpole_tensorboard/

It will display information such as the episode reward (when using a Monitor wrapper), the model losses and other
parameter unique to some models.

64 Chapter 1. Main Features

https://github.com/DLR-RM/stable-baselines3/issues/975#issuecomment-1198992211

Stable Baselines3 Documentation, Release 1.8.0

TensorBoard SCALARS INACTIVE LR - O}
[J Show data download links rollout 2
Ignore outliers in chart scaling
ep_len_mean ep_rew_mean
tag: rollout/ep_len_mean tag: rollout/ep_rew_mean
Tooltip sorting method: default -
80 80
Smoothing 0 &0
—e 0365 ¢ ©)
20 S
Horizontal Axis o o]
RELATIVE S SWALL koZk @ 4k Bk Bk 7k Bk Sk 10k Tk 2k Gk 4k Sk Bk 7k 8 Ok 10k
o= nEQ
Runs
Write a regex to filter runs session 1
O A2c1
O 2 tag: session/fps
TOGGLE ALL RUNS des3
a2c_cartpole_tensorboard 800
800
400
200

o

Tk 2k 8k 4k 5k Bk 7k 8k Ok 10k

o E
train 5
entropy_loss explained_variance learning_rate
tag: train/entropy_loss tag: train/explained_variance tag: train/leaming_rate
1
04 0 7Y 06
05 le+g i 02
02
06 2649
06
0.7 3049 -1
Tk 2k Bk 4k Bk 8k 7k Bk 9k 10k 1k 2¢ 3k 4k Sk Bk 7k Bk 9 10k Tk 2 3k 4k 5k Bk 7k Bk 9k 10k

1.11.2 Logging More Values

Using a callback, you can easily log more values with TensorBoard. Here is a simple example on how to log both
additional tensor or arbitrary scalar value:

import numpy as np

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import BaseCallback

model = SAC("MlpPolicy", "Pendulum-v1", tensorboard_log="/tmp/sac/", verbose=1)

class TensorboardCallback(BaseCallback):

e

Custom callback for plotting additional values in tensorboard.

i

def __init__(self, verbose=0):
super().__init__ (verbose)

def _on_step(self) -> bool:
Log scalar value (here a random variable)
value = np.random.random()

(continues on next page)

1.11. Tensorboard Integration 65

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

self.logger.record("random_value", value)
return True

model.learn(50000, callback=TensorboardCallback())

Note: If you want to log values more often than the default to tensorboard, you manually call self.logger.
dump (self.num_timesteps) in a callback (see issue #500).

1.11.3 Logging Images

TensorBoard supports periodic logging of image data, which helps evaluating agents at various stages during training.

Warning: To support image logging pillow must be installed otherwise, TensorBoard ignores the image and logs
a warning.

Here is an example of how to render an image to TensorBoard at regular intervals:

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import Image

model = SAC("MlpPolicy", "Pendulum-v1", tensorboard_log="/tmp/sac/", verbose=1)

class ImageRecorderCallback(BaseCallback):
def __init__(self, verbose=0):
super().__init__(verbose)

def _on_step(self):
image = self.training_env.render(mode="rgb_array")
"HWC" specify the dataformat of the image, here channel last
(H for height, W for width, C for channel)
See https://pytorch.org/docs/stable/tensorboard.html
for supported formats
self.logger.record("trajectory/image", Image(image, "HWC"), exclude=("stdout",
—"log", "json", "csv'))
return True

model .1learn(50000, callback=ImageRecorderCallback())

66 Chapter 1. Main Features

https://github.com/DLR-RM/stable-baselines3/issues/506
https://github.com/python-pillow/Pillow

Stable Baselines3 Documentation, Release 1.8.0

1.11.4 Logging Figures/Plots

TensorBoard supports periodic logging of figures/plots created with matplotlib, which helps evaluating agents at various
stages during training.

Warning: To support figure logging matplotlib must be installed otherwise, TensorBoard ignores the figure and
logs a warning.

Here is an example of how to store a plot in TensorBoard at regular intervals:

import numpy as np
import matplotlib.pyplot as plt

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import Figure

model = SAC("MlpPolicy", "Pendulum-v1", tensorboard_log="/tmp/sac/", verbose=1)

class FigureRecorderCallback(BaseCallback):
def __init__(self, verbose=0):
super().__init__(verbose)

def _on_step(self):
Plot values (here a random variable)
figure = plt.figure()
figure.add_subplot().plot(np.random.random(3))
Close the figure after logging it
self.logger.record("trajectory/figure", Figure(figure, close=True), exclude=(
~"stdout", "log", "json", "csv'))
plt.close()
return True

model.learn(50000, callback=FigureRecorderCallback())

1.11.5 Logging Videos

TensorBoard supports periodic logging of video data, which helps evaluating agents at various stages during training.

Warning: To support video logging moviepy must be installed otherwise, TensorBoard ignores the video and logs
a warning.

Here is an example of how to render an episode and log the resulting video to TensorBoard at regular intervals:

from typing import Any, Dict

import gym

(continues on next page)

1.11. Tensorboard Integration 67

https://matplotlib.org/
https://zulko.github.io/moviepy/

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

import torch as th

from stable_baselines3 import A2C

from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.logger import Video

class VideoRecorderCallback(BaseCallback):
def __init__(self, eval_env: gym.Env, render_freq: int, n_eval_episodes: int = 1,.
—deterministic: bool = True):
Records a video of an agent's trajectory traversing eval_env' ™ and logs it to.
—TensorBoard

:param eval_env: A gym environment from which the trajectory is recorded

:param render_freq: Render the agent's trajectory every eval_freq call of the.
—callback.

:param n_eval_episodes: Number of episodes to render

:param deterministic: Whether to use deterministic or stochastic policy

super().__init__Q

self._eval_env = eval_env

self._render_freq = render_freq

self._n_eval_episodes = n_eval_episodes

self._deterministic = deterministic

def _on_step(self) -> bool:
if self.n_calls % self._render_freq ==
screens = []

def grab_screens(_locals: Dict[str, Any], _globals: Dict[str, Any]) -> None:

mirn

Renders the environment in its current state, recording the screen in.
—the captured ‘screens’ list

:param _locals: A dictionary containing all local variables of the.
—~callback's scope

:param _globals: A dictionary containing all global variables of the.
—callback's scope

screen = self._eval_env.render (mode="rgb_array")

PyTorch uses CxHxW vs HxWxC gym (and tensorflow) image convention

screens.append(screen. transpose(2, 0, 1))

evaluate_policy(
self.model,
self._eval_env,
callback=grab_screens,
n_eval_episodes=self._n_eval_episodes,
deterministic=self._deterministic,

(continues on next page)

68 Chapter 1. Main Features

Stable Baselines3 Documentation, Release 1.8.0

(continued from previous page)

self.logger.record(

"trajectory/video",
Video(th.ByteTensor([screens]), fps=40),
exclude=("stdout", "log", "json", "csv"),

)

return True

model = A2C("MlpPolicy", "CartPole-vl1", tensorboard_log="runs/", verbose=1)
video_recorder = VideoRecorderCallback(gym.make("'CartPole-v1"), render_£freq=5000)
model .learn(total_timesteps=int(5e4), callback=video_recorder)

1.11.6 Logging Hyperparameters

TensorBoard supports logging of hyperparameters in its HPARAMS tab, which helps comparing agents trainings.

Warning: To display hyperparameters in the HPARAMS section, a metric_dict must be given (as well as a
hparam_dict).

Here is an example of how to save hyperparameters in TensorBoard:

from stable_baselines3 import A2C
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import HParam

class HParamCallback(BaseCallback):
Saves the hyperparameters and metrics at the start of the training, and logs them to.
— TensorBoard.

o

def _on_training_start(self) -> None:
hparam_dict = {
"algorithm": self.model._ _class__.__name__,
"learning rate": self.model.learning_rate,
"gamma": self.model.gamma,
}
define the metrics that will appear in the "HPARAMS' Tensorboard tab by.
—referencing their tag
Tensorbaord will find & display metrics from the SCALARS® tab
metric_dict = {
"rollout/ep_len_mean": O,
"train/value_loss": 0.0,

}

self.logger.record(
"hparams",
HParam(hparam_dict, metric_dict),
exclude=("stdout", "log", "json", "csv"