

    
      
          
            
  
Stable-Baselines3 Docs - Reliable Reinforcement Learning Implementations

Stable Baselines3 (SB3) [https://github.com/DLR-RM/stable-baselines3] is a set of reliable implementations of reinforcement learning algorithms in PyTorch.
It is the next major version of Stable Baselines [https://github.com/hill-a/stable-baselines].

Github repository: https://github.com/DLR-RM/stable-baselines3

Paper: https://jmlr.org/papers/volume22/20-1364/20-1364.pdf

RL Baselines3 Zoo (training framework for SB3): https://github.com/DLR-RM/rl-baselines3-zoo

RL Baselines3 Zoo provides a collection of pre-trained agents, scripts for training, evaluating agents, tuning hyperparameters, plotting results and recording videos.

SB3 Contrib (experimental RL code, latest algorithms): https://github.com/Stable-Baselines-Team/stable-baselines3-contrib


Main Features


	Unified structure for all algorithms


	PEP8 compliant (unified code style)


	Documented functions and classes


	Tests, high code coverage and type hints


	Clean code


	Tensorboard support


	The performance of each algorithm was tested (see Results section in their respective page)
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Citing Stable Baselines3

To cite this project in publications:

@article{stable-baselines3,
  author  = {Antonin Raffin and Ashley Hill and Adam Gleave and Anssi Kanervisto and Maximilian Ernestus and Noah Dormann},
  title   = {Stable-Baselines3: Reliable Reinforcement Learning Implementations},
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  volume  = {22},
  number  = {268},
  pages   = {1-8},
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Contributing

To any interested in making the rl baselines better, there are still some improvements
that need to be done.
You can check issues in the repo [https://github.com/DLR-RM/stable-baselines3/issues].

If you want to contribute, please read CONTRIBUTING.md [https://github.com/DLR-RM/stable-baselines3/blob/master/CONTRIBUTING.md] first.
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Installation


Prerequisites

Stable-Baselines3 requires python 3.7+ and PyTorch >= 1.11


Windows 10

We recommend using Anaconda [https://conda.io/docs/user-guide/install/windows.html] for Windows users for easier installation of Python packages and required libraries. You need an environment with Python version 3.6 or above.

For a quick start you can move straight to installing Stable-Baselines3 in the next step.


Note

Trying to create Atari environments may result to vague errors related to missing DLL files and modules. This is an
issue with atari-py package. See this discussion for more information [https://github.com/openai/atari-py/issues/65].





Stable Release

To install Stable Baselines3 with pip, execute:

pip install stable-baselines3[extra]






Note

Some shells such as Zsh require quotation marks around brackets, i.e. pip install 'stable-baselines3[extra]' More information [https://stackoverflow.com/a/30539963].



This includes an optional dependencies like Tensorboard, OpenCV or ale-py to train on atari games. If you do not need those, you can use:

pip install stable-baselines3






Note

If you need to work with OpenCV on a machine without a X-server (for instance inside a docker image),
you will need to install opencv-python-headless, see issue #298 [https://github.com/DLR-RM/stable-baselines3/issues/298].






Bleeding-edge version

pip install git+https://github.com/DLR-RM/stable-baselines3





with extras:

pip install "stable_baselines3[extra,tests,docs] @ git+https://github.com/DLR-RM/stable-baselines3"







Development version

To contribute to Stable-Baselines3, with support for running tests and building the documentation.

git clone https://github.com/DLR-RM/stable-baselines3 && cd stable-baselines3
pip install -e .[docs,tests,extra]







Using Docker Images

If you are looking for docker images with stable-baselines already installed in it,
we recommend using images from RL Baselines3 Zoo [https://github.com/DLR-RM/rl-baselines3-zoo].

Otherwise, the following images contained all the dependencies for stable-baselines3 but not the stable-baselines3 package itself.
They are made for development.


Use Built Images

GPU image (requires nvidia-docker [https://github.com/NVIDIA/nvidia-docker]):

docker pull stablebaselines/stable-baselines3





CPU only:

docker pull stablebaselines/stable-baselines3-cpu







Build the Docker Images

Build GPU image (with nvidia-docker):

make docker-gpu





Build CPU image:

make docker-cpu





Note: if you are using a proxy, you need to pass extra params during
build and do some tweaks [https://stackoverflow.com/questions/23111631/cannot-download-docker-images-behind-a-proxy]:

--network=host --build-arg HTTP_PROXY=http://your.proxy.fr:8080/ --build-arg http_proxy=http://your.proxy.fr:8080/ --build-arg HTTPS_PROXY=https://your.proxy.fr:8080/ --build-arg https_proxy=https://your.proxy.fr:8080/







Run the images (CPU/GPU)

Run the nvidia-docker GPU image

docker run -it --runtime=nvidia --rm --network host --ipc=host --name test --mount src="$(pwd)",target=/home/mamba/stable-baselines3,type=bind stablebaselines/stable-baselines3 bash -c 'cd /home/mamba/stable-baselines3/ && pytest tests/'





Or, with the shell file:

./scripts/run_docker_gpu.sh pytest tests/





Run the docker CPU image

docker run -it --rm --network host --ipc=host --name test --mount src="$(pwd)",target=/home/mamba/stable-baselines3,type=bind stablebaselines/stable-baselines3-cpu bash -c 'cd /home/mamba/stable-baselines3/ && pytest tests/'





Or, with the shell file:

./scripts/run_docker_cpu.sh pytest tests/





Explanation of the docker command:


	docker run -it create an instance of an image (=container), and
run it interactively (so ctrl+c will work)


	--rm option means to remove the container once it exits/stops
(otherwise, you will have to use docker rm)


	--network host don’t use network isolation, this allow to use
tensorboard/visdom on host machine


	--ipc=host Use the host system’s IPC namespace. IPC (POSIX/SysV IPC) namespace provides
separation of named shared memory segments, semaphores and message
queues.


	--name test give explicitly the name test to the container,
otherwise it will be assigned a random name


	--mount src=... give access of the local directory (pwd
command) to the container (it will be map to /home/mamba/stable-baselines), so
all the logs created in the container in this folder will be kept


	bash -c '...' Run command inside the docker image, here run the tests
(pytest tests/)









            

          

      

      

    

  

    
      
          
            
  
Getting Started


Note

Stable-Baselines3 (SB3) uses vectorized environments (VecEnv) internally.
Please read the associated section to learn more about its features and differences compared to a single Gym environment.



Most of the library tries to follow a sklearn-like syntax for the Reinforcement Learning algorithms.

Here is a quick example of how to train and run A2C on a CartPole environment:

import gymnasium as gym

from stable_baselines3 import A2C

env = gym.make("CartPole-v1", render_mode="rgb_array")

model = A2C("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=10_000)

vec_env = model.get_env()
obs = vec_env.reset()
for i in range(1000):
    action, _state = model.predict(obs, deterministic=True)
    obs, reward, done, info = vec_env.step(action)
    vec_env.render("human")
    # VecEnv resets automatically
    # if done:
    #   obs = vec_env.reset()






Note

You can find explanations about the logger output and names in the Logger section.



Or just train a model with a one line if
the environment is registered in Gymnasium [https://gymnasium.farama.org/tutorials/gymnasium_basics/environment_creation/#registering-envs] and if
the policy is registered:

from stable_baselines3 import A2C

model = A2C("MlpPolicy", "CartPole-v1").learn(10000)








            

          

      

      

    

  

    
      
          
            
  
Reinforcement Learning Tips and Tricks

The aim of this section is to help you doing reinforcement learning experiments.
It covers general advice about RL (where to start, which algorithm to choose, how to evaluate an algorithm, …),
as well as tips and tricks when using a custom environment or implementing an RL algorithm.


Note

We have a video on YouTube [https://www.youtube.com/watch?v=Ikngt0_DXJg] that covers
this section in more details. You can also find the slides here [https://araffin.github.io/slides/rlvs-tips-tricks/].




General advice when using Reinforcement Learning


TL;DR


	Read about RL and Stable Baselines3


	Do quantitative experiments and hyperparameter tuning if needed


	Evaluate the performance using a separate test environment (remember to check wrappers!)


	For better performance, increase the training budget




Like any other subject, if you want to work with RL, you should first read about it (we have a dedicated resource page to get you started)
to understand what you are using. We also recommend you read Stable Baselines3 (SB3) documentation and do the tutorial [https://github.com/araffin/rl-tutorial-jnrr19/tree/sb3].
It covers basic usage and guide you towards more advanced concepts of the library (e.g. callbacks and wrappers).

Reinforcement Learning differs from other machine learning methods in several ways. The data used to train the agent is collected
through interactions with the environment by the agent itself (compared to supervised learning where you have a fixed dataset for instance).
This dependence can lead to vicious circle: if the agent collects poor quality data (e.g., trajectories with no rewards), then it will not improve and continue to amass
bad trajectories.

This factor, among others, explains that results in RL may vary from one run to another (i.e., when only the seed of the pseudo-random generator changes).
For this reason, you should always do several runs to have quantitative results.

Good results in RL are generally dependent on finding appropriate hyperparameters. Recent algorithms (PPO, SAC, TD3) normally require little hyperparameter tuning,
however, don’t expect the default ones to work on any environment.

Therefore, we highly recommend you to take a look at the RL zoo [https://github.com/DLR-RM/rl-baselines3-zoo] (or the original papers) for tuned hyperparameters.
A best practice when you apply RL to a new problem is to do automatic hyperparameter optimization. Again, this is included in the RL zoo [https://github.com/DLR-RM/rl-baselines3-zoo].

When applying RL to a custom problem, you should always normalize the input to the agent (e.g. using VecNormalize for PPO/A2C)
and look at common preprocessing done on other environments (e.g. for Atari [https://danieltakeshi.github.io/2016/11/25/frame-skipping-and-preprocessing-for-deep-q-networks-on-atari-2600-games/], frame-stack, …).
Please refer to Tips and Tricks when creating a custom environment paragraph below for more advice related to custom environments.



Current Limitations of RL

You have to be aware of the current limitations [https://www.alexirpan.com/2018/02/14/rl-hard.html] of reinforcement learning.

Model-free RL algorithms (i.e. all the algorithms implemented in SB) are usually sample inefficient. They require a lot of samples (sometimes millions of interactions) to learn something useful.
That’s why most of the successes in RL were achieved on games or in simulation only. For instance, in this work [https://www.youtube.com/watch?v=aTDkYFZFWug] by ETH Zurich, the ANYmal robot was trained in simulation only, and then tested in the real world.

As a general advice, to obtain better performances, you should augment the budget of the agent (number of training timesteps).

In order to achieve the desired behavior, expert knowledge is often required to design an adequate reward function.
This reward engineering (or RewArt as coined by Freek Stulp [http://www.freekstulp.net/]), necessitates several iterations. As a good example of reward shaping,
you can take a look at Deep Mimic paper [https://xbpeng.github.io/projects/DeepMimic/index.html] which combines imitation learning and reinforcement learning to do acrobatic moves.

One last limitation of RL is the instability of training. That is to say, you can observe during training a huge drop in performance.
This behavior is particularly present in DDPG, that’s why its extension TD3 tries to tackle that issue.
Other method, like TRPO or PPO make use of a trust region to minimize that problem by avoiding too large update.



How to evaluate an RL algorithm?


Note

Pay attention to environment wrappers when evaluating your agent and comparing results to others’ results. Modifications to episode rewards
or lengths may also affect evaluation results which may not be desirable. Check evaluate_policy helper function in Evaluation Helper section.



Because most algorithms use exploration noise during training, you need a separate test environment to evaluate the performance
of your agent at a given time. It is recommended to periodically evaluate your agent for n test episodes (n is usually between 5 and 20)
and average the reward per episode to have a good estimate.


Note

We provide an EvalCallback for doing such evaluation. You can read more about it in the Callbacks section.



As some policy are stochastic by default (e.g. A2C or PPO), you should also try to set deterministic=True when calling the .predict() method,
this frequently leads to better performance.
Looking at the training curve (episode reward function of the timesteps) is a good proxy but underestimates the agent true performance.

We suggest you reading Deep Reinforcement Learning that Matters [https://arxiv.org/abs/1709.06560] for a good discussion about RL evaluation.

You can also take a look at this blog post [https://openlab-flowers.inria.fr/t/how-many-random-seeds-should-i-use-statistical-power-analysis-in-deep-reinforcement-learning-experiments/457]
and this issue [https://github.com/hill-a/stable-baselines/issues/199] by Cédric Colas.




Which algorithm should I use?

There is no silver bullet in RL, depending on your needs and problem, you may choose one or the other.
The first distinction comes from your action space, i.e., do you have discrete (e.g. LEFT, RIGHT, …)
or continuous actions (ex: go to a certain speed)?

Some algorithms are only tailored for one or the other domain: DQN only supports discrete actions, where SAC is restricted to continuous actions.

The second difference that will help you choose is whether you can parallelize your training or not.
If what matters is the wall clock training time, then you should lean towards A2C and its derivatives (PPO, …).
Take a look at the Vectorized Environments to learn more about training with multiple workers.

To sum it up:


Discrete Actions


Note

This covers Discrete, MultiDiscrete, Binary and MultiBinary spaces




Discrete Actions - Single Process

DQN with extensions (double DQN, prioritized replay, …) are the recommended algorithms.
We notably provide QR-DQN in our contrib repo.
DQN is usually slower to train (regarding wall clock time) but is the most sample efficient (because of its replay buffer).



Discrete Actions - Multiprocessed

You should give a try to PPO or A2C.




Continuous Actions


Continuous Actions - Single Process

Current State Of The Art (SOTA) algorithms are SAC, TD3 and TQC (available in our contrib repo).
Please use the hyperparameters in the RL zoo [https://github.com/DLR-RM/rl-baselines3-zoo] for best results.



Continuous Actions - Multiprocessed

Take a look at PPO, TRPO (available in our contrib repo) or A2C. Again, don’t forget to take the hyperparameters from the RL zoo [https://github.com/DLR-RM/rl-baselines3-zoo]
for continuous actions problems (cf Bullet envs).


Note

Normalization is critical for those algorithms






Goal Environment

If your environment follows the GoalEnv interface (cf HER), then you should use
HER + (SAC/TD3/DDPG/DQN/QR-DQN/TQC) depending on the action space.


Note

The batch_size is an important hyperparameter for experiments with HER






Tips and Tricks when creating a custom environment

If you want to learn about how to create a custom environment, we recommend you read this page.
We also provide a colab notebook [https://colab.research.google.com/github/araffin/rl-tutorial-jnrr19/blob/master/5_custom_gym_env.ipynb] for
a concrete example of creating a custom gym environment.

Some basic advice:


	always normalize your observation space when you can, i.e., when you know the boundaries


	normalize your action space and make it symmetric when continuous (cf potential issue below) A good practice is to rescale your actions to lie in [-1, 1]. This does not limit you as you can easily rescale the action inside the environment


	start with shaped reward (i.e. informative reward) and simplified version of your problem


	debug with random actions to check that your environment works and follows the gym interface:




Two important things to keep in mind when creating a custom environment is to avoid breaking Markov assumption
and properly handle termination due to a timeout (maximum number of steps in an episode).
For instance, if there is some time delay between action and observation (e.g. due to wifi communication), you should give a history of observations
as input.

Termination due to timeout (max number of steps per episode) needs to be handled separately. You should fill the key in the info dict: info["TimeLimit.truncated"] = True.
If you are using the gym TimeLimit wrapper, this will be done automatically.
You can read Time Limit in RL [https://arxiv.org/abs/1712.00378] or take a look at the RL Tips and Tricks video [https://www.youtube.com/watch?v=Ikngt0_DXJg]
for more details.

We provide a helper to check that your environment runs without error:

from stable_baselines3.common.env_checker import check_env

env = CustomEnv(arg1, ...)
# It will check your custom environment and output additional warnings if needed
check_env(env)





If you want to quickly try a random agent on your environment, you can also do:

env = YourEnv()
obs, info = env.reset()
n_steps = 10
for _ in range(n_steps):
    # Random action
    action = env.action_space.sample()
    obs, reward, terminated, truncated, info = env.step(action)
    if done:
        obs, info = env.reset()





Why should I normalize the action space?

Most reinforcement learning algorithms rely on a Gaussian distribution (initially centered at 0 with std 1) for continuous actions.
So, if you forget to normalize the action space when using a custom environment,
this can harm learning and be difficult to debug (cf attached image and issue #473 [https://github.com/hill-a/stable-baselines/issues/473]).


[image: ../_images/mistake.png]

Another consequence of using a Gaussian is that the action range is not bounded.
That’s why clipping is usually used as a bandage to stay in a valid interval.
A better solution would be to use a squashing function (cf SAC) or a Beta distribution (cf issue #112 [https://github.com/hill-a/stable-baselines/issues/112]).


Note

This statement is not true for DDPG or TD3 because they don’t rely on any probability distribution.





Tips and Tricks when implementing an RL algorithm

When you try to reproduce a RL paper by implementing the algorithm, the nuts and bolts of RL research [http://joschu.net/docs/nuts-and-bolts.pdf]
by John Schulman are quite useful (video [https://www.youtube.com/watch?v=8EcdaCk9KaQ]).

We recommend following those steps to have a working RL algorithm:


	Read the original paper several times


	Read existing implementations (if available)


	Try to have some “sign of life” on toy problems


	Validate the implementation by making it run on harder and harder envs (you can compare results against the RL zoo).
You usually need to run hyperparameter optimization for that step.




You need to be particularly careful on the shape of the different objects you are manipulating (a broadcast mistake will fail silently cf. issue #75 [https://github.com/hill-a/stable-baselines/pull/76])
and when to stop the gradient propagation.

Don’t forget to handle termination due to timeout separately (see remark in the custom environment section above),
you can also take a look at Issue #284 [https://github.com/DLR-RM/stable-baselines3/issues/284] and Issue #633 [https://github.com/DLR-RM/stable-baselines3/issues/633].

A personal pick (by @araffin) for environments with gradual difficulty in RL with continuous actions:


	Pendulum (easy to solve)


	HalfCheetahBullet (medium difficulty with local minima and shaped reward)


	BipedalWalkerHardcore (if it works on that one, then you can have a cookie)




in RL with discrete actions:


	CartPole-v1 (easy to be better than random agent, harder to achieve maximal performance)


	LunarLander


	Pong (one of the easiest Atari game)


	other Atari games (e.g. Breakout)








            

          

      

      

    

  

    
      
          
            
  
Reinforcement Learning Resources

Stable-Baselines3 assumes that you already understand the basic concepts of Reinforcement Learning (RL).

However, if you want to learn about RL, there are several good resources to get started:


	OpenAI Spinning Up [https://spinningup.openai.com/en/latest/]


	The Deep Reinforcement Learning Course [https://huggingface.co/learn/deep-rl-course/unit0/introduction]


	David Silver’s course [http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html]


	Lilian Weng’s blog [https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html]


	Berkeley’s Deep RL Bootcamp [https://sites.google.com/view/deep-rl-bootcamp/lectures]


	Berkeley’s Deep Reinforcement Learning course [http://rail.eecs.berkeley.edu/deeprlcourse/]


	More resources [https://github.com/dennybritz/reinforcement-learning]







            

          

      

      

    

  

    
      
          
            
  
RL Algorithms

This table displays the rl algorithms that are implemented in the Stable Baselines3 project,
along with some useful characteristics: support for discrete/continuous actions, multiprocessing.



	Name

	Box

	Discrete

	MultiDiscrete

	MultiBinary

	Multi Processing





	ARS [1]

	✔️

	✔️

	❌

	❌

	✔️



	A2C

	✔️

	✔️

	✔️

	✔️

	✔️



	DDPG

	✔️

	❌

	❌

	❌

	✔️



	DQN

	❌

	✔️

	❌

	❌

	✔️



	HER

	✔️

	✔️

	❌

	❌

	✔️



	PPO

	✔️

	✔️

	✔️

	✔️

	✔️



	QR-DQN [1]

	❌

	️ ✔️

	❌

	❌

	✔️



	RecurrentPPO [1]

	✔️

	✔️

	✔️

	✔️

	✔️



	SAC

	✔️

	❌

	❌

	❌

	✔️



	TD3

	✔️

	❌

	❌

	❌

	✔️



	TQC [1]

	✔️

	❌

	❌

	❌

	✔️



	TRPO  [1]

	✔️

	✔️

	✔️

	✔️

	✔️



	Maskable PPO [1]

	❌

	✔️

	✔️

	✔️

	✔️








[1]
(1,2,3,4,5,6)
Implemented in SB3 Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]




Note

Tuple observation spaces are not supported by any environment,
however, single-level Dict spaces are (cf. Examples).



Actions gym.spaces:


	Box: A N-dimensional box that contains every point in the action
space.


	Discrete: A list of possible actions, where each timestep only
one of the actions can be used.


	MultiDiscrete: A list of possible actions, where each timestep only one action of each discrete set can be used.


	MultiBinary: A list of possible actions, where each timestep any of the actions can be used in any combination.





Note

More algorithms (like QR-DQN or TQC) are implemented in our contrib repo.




Note

Some logging values (like ep_rew_mean, ep_len_mean) are only available when using a Monitor wrapper
See Issue #339 [https://github.com/hill-a/stable-baselines/issues/339] for more info.




Note

When using off-policy algorithms, Time Limits [https://arxiv.org/abs/1712.00378] (aka timeouts) are handled
properly (cf. issue #284 [https://github.com/DLR-RM/stable-baselines3/issues/284]).
You can revert to SB3 < 2.1.0 behavior by passing handle_timeout_termination=False
via the replay_buffer_kwargs argument.




Reproducibility

Completely reproducible results are not guaranteed across PyTorch releases or different platforms.
Furthermore, results need not be reproducible between CPU and GPU executions, even when using identical seeds.

In order to make computations deterministics, on your specific problem on one specific platform,
you need to pass a seed argument at the creation of a model.
If you pass an environment to the model using set_env(), then you also need to seed the environment first.

Credit: part of the Reproducibility section comes from PyTorch Documentation [https://pytorch.org/docs/stable/notes/randomness.html]





            

          

      

      

    

  

    
      
          
            
  
Examples


Note

These examples are only to demonstrate the use of the library and its functions, and the trained agents may not solve the environments. Optimized               hyperparameters can be found in the RL Zoo repository [https://github.com/DLR-RM/rl-baselines3-zoo].




Try it online with Colab Notebooks!

All the following examples can be executed online using Google colab [image: colab]
notebooks:


	Full Tutorial [https://github.com/araffin/rl-tutorial-jnrr19/tree/sb3]


	All Notebooks [https://github.com/Stable-Baselines-Team/rl-colab-notebooks/tree/sb3]


	Getting Started [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/stable_baselines_getting_started.ipynb]


	Training, Saving, Loading [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/saving_loading_dqn.ipynb]


	Multiprocessing [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/multiprocessing_rl.ipynb]


	Monitor Training and Plotting [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/monitor_training.ipynb]


	Atari Games [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/atari_games.ipynb]


	RL Baselines zoo [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/rl-baselines-zoo.ipynb]


	PyBullet [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/pybullet.ipynb]


	Hindsight Experience Replay [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/stable_baselines_her.ipynb]


	Advanced Saving and Loading [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/advanced_saving_loading.ipynb]






Basic Usage: Training, Saving, Loading

In the following example, we will train, save and load a DQN model on the Lunar Lander environment.

[image: ../_images/colab-badge.svg]
 [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/saving_loading_dqn.ipynb]
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Lunar Lander Environment




Note

LunarLander requires the python package box2d.
You can install it using apt install swig and then pip install box2d box2d-kengz




Warning

load method re-creates the model from scratch and should be called on the Algorithm without instantiating it first,
e.g. model = DQN.load("dqn_lunar", env=env) instead of model = DQN(env=env) followed by  model.load("dqn_lunar"). The latter will not work as load is not an in-place operation.
If you want to load parameters without re-creating the model, e.g. to evaluate the same model
with multiple different sets of parameters, consider using set_parameters instead.



import gymnasium as gym

from stable_baselines3 import DQN
from stable_baselines3.common.evaluation import evaluate_policy


# Create environment
env = gym.make("LunarLander-v2", render_mode="rgb_array")

# Instantiate the agent
model = DQN("MlpPolicy", env, verbose=1)
# Train the agent and display a progress bar
model.learn(total_timesteps=int(2e5), progress_bar=True)
# Save the agent
model.save("dqn_lunar")
del model  # delete trained model to demonstrate loading

# Load the trained agent
# NOTE: if you have loading issue, you can pass `print_system_info=True`
# to compare the system on which the model was trained vs the current one
# model = DQN.load("dqn_lunar", env=env, print_system_info=True)
model = DQN.load("dqn_lunar", env=env)

# Evaluate the agent
# NOTE: If you use wrappers with your environment that modify rewards,
#       this will be reflected here. To evaluate with original rewards,
#       wrap environment in a "Monitor" wrapper before other wrappers.
mean_reward, std_reward = evaluate_policy(model, model.get_env(), n_eval_episodes=10)

# Enjoy trained agent
vec_env = model.get_env()
obs = vec_env.reset()
for i in range(1000):
    action, _states = model.predict(obs, deterministic=True)
    obs, rewards, dones, info = vec_env.step(action)
    vec_env.render("human")







Multiprocessing: Unleashing the Power of Vectorized Environments

[image: ../_images/colab-badge.svg]
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CartPole Environment



import gymnasium as gym

from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.utils import set_random_seed

def make_env(env_id: str, rank: int, seed: int = 0):
    """
    Utility function for multiprocessed env.

    :param env_id: the environment ID
    :param num_env: the number of environments you wish to have in subprocesses
    :param seed: the inital seed for RNG
    :param rank: index of the subprocess
    """
    def _init():
        env = gym.make(env_id, render_mode="human")
        env.reset(seed=seed + rank)
        return env
    set_random_seed(seed)
    return _init

if __name__ == "__main__":
    env_id = "CartPole-v1"
    num_cpu = 4  # Number of processes to use
    # Create the vectorized environment
    vec_env = SubprocVecEnv([make_env(env_id, i) for i in range(num_cpu)])

    # Stable Baselines provides you with make_vec_env() helper
    # which does exactly the previous steps for you.
    # You can choose between `DummyVecEnv` (usually faster) and `SubprocVecEnv`
    # env = make_vec_env(env_id, n_envs=num_cpu, seed=0, vec_env_cls=SubprocVecEnv)

    model = PPO("MlpPolicy", vec_env, verbose=1)
    model.learn(total_timesteps=25_000)

    obs = vec_env.reset()
    for _ in range(1000):
        action, _states = model.predict(obs)
        obs, rewards, dones, info = vec_env.step(action)
        vec_env.render()







Multiprocessing with off-policy algorithms


Warning

When using multiple environments with off-policy algorithms, you should update the gradient_steps
parameter too. Set it to gradient_steps=-1 to perform as many gradient steps as transitions collected.
There is usually a compromise between wall-clock time and sample efficiency,
see this example in PR #439 [https://github.com/DLR-RM/stable-baselines3/pull/439#issuecomment-961796799]



import gymnasium as gym

from stable_baselines3 import SAC
from stable_baselines3.common.env_util import make_vec_env

vec_env = make_vec_env("Pendulum-v0", n_envs=4, seed=0)

# We collect 4 transitions per call to `ènv.step()`
# and performs 2 gradient steps per call to `ènv.step()`
# if gradient_steps=-1, then we would do 4 gradients steps per call to `ènv.step()`
model = SAC("MlpPolicy", vec_env, train_freq=1, gradient_steps=2, verbose=1)
model.learn(total_timesteps=10_000)







Dict Observations

You can use environments with dictionary observation spaces. This is useful in the case where one can’t directly
concatenate observations such as an image from a camera combined with a vector of servo sensor data (e.g., rotation angles).
Stable Baselines3 provides SimpleMultiObsEnv as an example of this kind of of setting.
The environment is a simple grid world but the observations for each cell come in the form of dictionaries.
These dictionaries are randomly initialized on the creation of the environment and contain a vector observation and an image observation.

from stable_baselines3 import PPO
from stable_baselines3.common.envs import SimpleMultiObsEnv


# Stable Baselines provides SimpleMultiObsEnv as an example environment with Dict observations
env = SimpleMultiObsEnv(random_start=False)

model = PPO("MultiInputPolicy", env, verbose=1)
model.learn(total_timesteps=100_000)







Callbacks: Monitoring Training


Note

We recommend reading the Callback section



You can define a custom callback function that will be called inside the agent.
This could be useful when you want to monitor training, for instance display live
learning curves in Tensorboard (or in Visdom) or save the best agent.
If your callback returns False, training is aborted early.

[image: ../_images/colab-badge.svg]
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import gymnasium as gym
import numpy as np
import matplotlib.pyplot as plt

from stable_baselines3 import TD3
from stable_baselines3.common import results_plotter
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.results_plotter import load_results, ts2xy, plot_results
from stable_baselines3.common.noise import NormalActionNoise
from stable_baselines3.common.callbacks import BaseCallback


class SaveOnBestTrainingRewardCallback(BaseCallback):
    """
    Callback for saving a model (the check is done every ``check_freq`` steps)
    based on the training reward (in practice, we recommend using ``EvalCallback``).

    :param check_freq:
    :param log_dir: Path to the folder where the model will be saved.
      It must contains the file created by the ``Monitor`` wrapper.
    :param verbose: Verbosity level: 0 for no output, 1 for info messages, 2 for debug messages
    """
    def __init__(self, check_freq: int, log_dir: str, verbose: int = 1):
        super(SaveOnBestTrainingRewardCallback, self).__init__(verbose)
        self.check_freq = check_freq
        self.log_dir = log_dir
        self.save_path = os.path.join(log_dir, "best_model")
        self.best_mean_reward = -np.inf

    def _init_callback(self) -> None:
        # Create folder if needed
        if self.save_path is not None:
            os.makedirs(self.save_path, exist_ok=True)

    def _on_step(self) -> bool:
        if self.n_calls % self.check_freq == 0:

          # Retrieve training reward
          x, y = ts2xy(load_results(self.log_dir), "timesteps")
          if len(x) > 0:
              # Mean training reward over the last 100 episodes
              mean_reward = np.mean(y[-100:])
              if self.verbose >= 1:
                print(f"Num timesteps: {self.num_timesteps}")
                print(f"Best mean reward: {self.best_mean_reward:.2f} - Last mean reward per episode: {mean_reward:.2f}")

              # New best model, you could save the agent here
              if mean_reward > self.best_mean_reward:
                  self.best_mean_reward = mean_reward
                  # Example for saving best model
                  if self.verbose >= 1:
                    print(f"Saving new best model to {self.save_path}")
                  self.model.save(self.save_path)

        return True

# Create log dir
log_dir = "tmp/"
os.makedirs(log_dir, exist_ok=True)

# Create and wrap the environment
env = gym.make("LunarLanderContinuous-v2")
env = Monitor(env, log_dir)

# Add some action noise for exploration
n_actions = env.action_space.shape[-1]
action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))
# Because we use parameter noise, we should use a MlpPolicy with layer normalization
model = TD3("MlpPolicy", env, action_noise=action_noise, verbose=0)
# Create the callback: check every 1000 steps
callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir)
# Train the agent
timesteps = 1e5
model.learn(total_timesteps=int(timesteps), callback=callback)

plot_results([log_dir], timesteps, results_plotter.X_TIMESTEPS, "TD3 LunarLander")
plt.show()







Callbacks: Evaluate Agent Performance

To periodically evaluate an agent’s performance on a separate test environment, use EvalCallback.
You can control the evaluation frequency with eval_freq to monitor your agent’s progress during training.

import os
import gymnasium as gym

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import EvalCallback
from stable-baselines3.common.env_util import make_vec_env

env_id = "Pendulum-v1"
n_training_envs = 1
n_eval_envs = 5

# Create log dir where evaluation results will be saved
eval_log_dir = "./eval_logs/"
os.makedirs(eval_log_dir, exist_ok=True)

# Initialize a vectorized training environment with default parameters
train_env = make_vec_env(env_id, n_env=n_training_envs, seed=0)

# Separate evaluation env, with different parameters passed via env_kwargs
# Eval environments can be vectorized to speed up evaluation.
eval_env = make_vec_env(env_id, n_envs=n_eval_envs, seed=0,
                        env_kwargs={'g':0.7})

# Create callback that evaluates agent for 5 episodes every 500 training environment steps.
# When using multiple training environments, agent will be evaluated every
# eval_freq calls to train_env.step(), thus it will be evaluated every
# (eval_freq * n_envs) training steps. See EvalCallback doc for more information.
eval_callback = EvalCallback(eval_env, best_model_save_path=eval_log_dir,
                              log_path=eval_log_dir, eval_freq=max(500 // n_training_envs, 1),
                              n_eval_episodes=5, deterministic=True,
                              render=False)

model = SAC("MlpPolicy", train_env)
model.learn(5000, callback=eval_callback)







Atari Games


[image: ../_images/breakout.gif]

Trained A2C agent on Breakout
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Pong Environment



Training a RL agent on Atari games is straightforward thanks to make_atari_env helper function.
It will do all the preprocessing [https://danieltakeshi.github.io/2016/11/25/frame-skipping-and-preprocessing-for-deep-q-networks-on-atari-2600-games/]
and multiprocessing for you. To install the Atari environments, run the command pip install gym[atari, accept-rom-license] to install the Atari environments and ROMs, or install Stable Baselines3 with pip install stable-baselines3[extra] to install this and other optional dependencies.

[image: ../_images/colab-badge.svg]
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from stable_baselines3 import A2C

# There already exists an environment generator
# that will make and wrap atari environments correctly.
# Here we are also multi-worker training (n_envs=4 => 4 environments)
vec_env = make_atari_env("PongNoFrameskip-v4", n_envs=4, seed=0)
# Frame-stacking with 4 frames
vec_env = VecFrameStack(vec_env, n_stack=4)

model = A2C("CnnPolicy", vec_env, verbose=1)
model.learn(total_timesteps=25_000)

obs = vec_env.reset()
while True:
    action, _states = model.predict(obs, deterministic=False)
    obs, rewards, dones, info = vec_env.step(action)
    vec_env.render("human")







PyBullet: Normalizing input features

Normalizing input features may be essential to successful training of an RL agent
(by default, images are scaled but not other types of input),
for instance when training on PyBullet [https://github.com/bulletphysics/bullet3/] environments. For that, a wrapper exists and
will compute a running average and standard deviation of input features (it can do the same for rewards).


Note

you need to install pybullet with pip install pybullet
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 [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/pybullet.ipynb]import os
import gymnasium as gym
import pybullet_envs

from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
from stable_baselines3 import PPO

# Note: pybullet is not compatible yet with Gymnasium
# you might need to use `import rl_zoo3.gym_patches`
# and use gym (not Gymnasium) to instantiate the env
# Alternatively, you can use the MuJoCo equivalent "HalfCheetah-v4"
vec_env = DummyVecEnv([lambda: gym.make("HalfCheetahBulletEnv-v0")])
# Automatically normalize the input features and reward
vec_env = VecNormalize(vec_env, norm_obs=True, norm_reward=True,
                   clip_obs=10.)

model = PPO("MlpPolicy", vec_env)
model.learn(total_timesteps=2000)

# Don't forget to save the VecNormalize statistics when saving the agent
log_dir = "/tmp/"
model.save(log_dir + "ppo_halfcheetah")
stats_path = os.path.join(log_dir, "vec_normalize.pkl")
env.save(stats_path)

# To demonstrate loading
del model, vec_env

# Load the saved statistics
vec_env = DummyVecEnv([lambda: gym.make("HalfCheetahBulletEnv-v0")])
vec_env = VecNormalize.load(stats_path, vec_env)
#  do not update them at test time
vec_env.training = False
# reward normalization is not needed at test time
vec_env.norm_reward = False

# Load the agent
model = PPO.load(log_dir + "ppo_halfcheetah", env=vec_env)







Hindsight Experience Replay (HER)

For this example, we are using Highway-Env [https://github.com/eleurent/highway-env] by @eleurent [https://github.com/eleurent].
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The highway-parking-v0 environment.



The parking env is a goal-conditioned continuous control task, in which the vehicle must park in a given space with the appropriate heading.


Note

The hyperparameters in the following example were optimized for that environment.



import gymnasium as gym
import highway_env
import numpy as np

from stable_baselines3 import HerReplayBuffer, SAC, DDPG, TD3
from stable_baselines3.common.noise import NormalActionNoise

env = gym.make("parking-v0")

# Create 4 artificial transitions per real transition
n_sampled_goal = 4

# SAC hyperparams:
model = SAC(
    "MultiInputPolicy",
    env,
    replay_buffer_class=HerReplayBuffer,
    replay_buffer_kwargs=dict(
      n_sampled_goal=n_sampled_goal,
      goal_selection_strategy="future",
    ),
    verbose=1,
    buffer_size=int(1e6),
    learning_rate=1e-3,
    gamma=0.95,
    batch_size=256,
    policy_kwargs=dict(net_arch=[256, 256, 256]),
)

model.learn(int(2e5))
model.save("her_sac_highway")

# Load saved model
# Because it needs access to `env.compute_reward()`
# HER must be loaded with the env
env = gym.make("parking-v0", render_mode="human") # Change the render mode
model = SAC.load("her_sac_highway", env=env)

obs, info = env.reset()

# Evaluate the agent
episode_reward = 0
for _ in range(100):
    action, _ = model.predict(obs, deterministic=True)
    obs, reward, terminated, truncated, info = env.step(action)
    episode_reward += reward
    if terminated or truncated or info.get("is_success", False):
        print("Reward:", episode_reward, "Success?", info.get("is_success", False))
        episode_reward = 0.0
        obs, info = env.reset()







Learning Rate Schedule

All algorithms allow you to pass a learning rate schedule that takes as input the current progress remaining (from 1 to 0).
PPO’s clip_range` parameter also accepts such schedule.

The RL Zoo [https://github.com/DLR-RM/rl-baselines3-zoo] already includes
linear and constant schedules.

from typing import Callable

from stable_baselines3 import PPO


def linear_schedule(initial_value: float) -> Callable[[float], float]:
    """
    Linear learning rate schedule.

    :param initial_value: Initial learning rate.
    :return: schedule that computes
      current learning rate depending on remaining progress
    """
    def func(progress_remaining: float) -> float:
        """
        Progress will decrease from 1 (beginning) to 0.

        :param progress_remaining:
        :return: current learning rate
        """
        return progress_remaining * initial_value

    return func

# Initial learning rate of 0.001
model = PPO("MlpPolicy", "CartPole-v1", learning_rate=linear_schedule(0.001), verbose=1)
model.learn(total_timesteps=20_000)
# By default, `reset_num_timesteps` is True, in which case the learning rate schedule resets.
# progress_remaining = 1.0 - (num_timesteps / total_timesteps)
model.learn(total_timesteps=10_000, reset_num_timesteps=True)







Advanced Saving and Loading

In this example, we show how to use a policy independently from a model (and how to save it, load it) and save/load a replay buffer.

By default, the replay buffer is not saved when calling model.save(), in order to save space on the disk (a replay buffer can be up to several GB when using images).
However, SB3 provides a save_replay_buffer() and load_replay_buffer() method to save it separately.


Note

For training model after loading it, we recommend loading the replay buffer to ensure stable learning (for off-policy algorithms).
You also need to pass reset_num_timesteps=True to learn function which initializes the environment
and agent for training if a new environment was created since saving the model.
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from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.sac.policies import MlpPolicy

# Create the model and the training environment
model = SAC("MlpPolicy", "Pendulum-v1", verbose=1,
            learning_rate=1e-3)

# train the model
model.learn(total_timesteps=6000)

# save the model
model.save("sac_pendulum")

# the saved model does not contain the replay buffer
loaded_model = SAC.load("sac_pendulum")
print(f"The loaded_model has {loaded_model.replay_buffer.size()} transitions in its buffer")

# now save the replay buffer too
model.save_replay_buffer("sac_replay_buffer")

# load it into the loaded_model
loaded_model.load_replay_buffer("sac_replay_buffer")

# now the loaded replay is not empty anymore
print(f"The loaded_model has {loaded_model.replay_buffer.size()} transitions in its buffer")

# Save the policy independently from the model
# Note: if you don't save the complete model with `model.save()`
# you cannot continue training afterward
policy = model.policy
policy.save("sac_policy_pendulum")

# Retrieve the environment
env = model.get_env()

# Evaluate the policy
mean_reward, std_reward = evaluate_policy(policy, env, n_eval_episodes=10, deterministic=True)

print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")

# Load the policy independently from the model
saved_policy = MlpPolicy.load("sac_policy_pendulum")

# Evaluate the loaded policy
mean_reward, std_reward = evaluate_policy(saved_policy, env, n_eval_episodes=10, deterministic=True)

print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")







Accessing and modifying model parameters

You can access model’s parameters via set_parameters and get_parameters functions,
or via model.policy.state_dict() (and load_state_dict()),
which use dictionaries that map variable names to PyTorch tensors.

These functions are useful when you need to e.g. evaluate large set of models with same network structure,
visualize different layers of the network or modify parameters manually.

Policies also offers a simple way to save/load weights as a NumPy vector, using parameters_to_vector()
and load_from_vector() method.

Following example demonstrates reading parameters, modifying some of them and loading them to model
by implementing evolution strategy (es) [http://blog.otoro.net/2017/10/29/visual-evolution-strategies/]
for solving the CartPole-v1 environment. The initial guess for parameters is obtained by running
A2C policy gradient updates on the model.

from typing import Dict

import gymnasium as gym
import numpy as np
import torch as th

from stable_baselines3 import A2C
from stable_baselines3.common.evaluation import evaluate_policy


def mutate(params: Dict[str, th.Tensor]) -> Dict[str, th.Tensor]:
    """Mutate parameters by adding normal noise to them"""
    return dict((name, param + th.randn_like(param)) for name, param in params.items())


# Create policy with a small network
model = A2C(
    "MlpPolicy",
    "CartPole-v1",
    ent_coef=0.0,
    policy_kwargs={"net_arch": [32]},
    seed=0,
    learning_rate=0.05,
)

# Use traditional actor-critic policy gradient updates to
# find good initial parameters
model.learn(total_timesteps=10_000)

# Include only variables with "policy", "action" (policy) or "shared_net" (shared layers)
# in their name: only these ones affect the action.
# NOTE: you can retrieve those parameters using model.get_parameters() too
mean_params = dict(
    (key, value)
    for key, value in model.policy.state_dict().items()
    if ("policy" in key or "shared_net" in key or "action" in key)
)

# population size of 50 invdiduals
pop_size = 50
# Keep top 10%
n_elite = pop_size // 10
# Retrieve the environment
vec_env = model.get_env()

for iteration in range(10):
    # Create population of candidates and evaluate them
    population = []
    for population_i in range(pop_size):
        candidate = mutate(mean_params)
        # Load new policy parameters to agent.
        # Tell function that it should only update parameters
        # we give it (policy parameters)
        model.policy.load_state_dict(candidate, strict=False)
        # Evaluate the candidate
        fitness, _ = evaluate_policy(model, vec_env)
        population.append((candidate, fitness))
    # Take top 10% and use average over their parameters as next mean parameter
    top_candidates = sorted(population, key=lambda x: x[1], reverse=True)[:n_elite]
    mean_params = dict(
        (
            name,
            th.stack([candidate[0][name] for candidate in top_candidates]).mean(dim=0),
        )
        for name in mean_params.keys()
    )
    mean_fitness = sum(top_candidate[1] for top_candidate in top_candidates) / n_elite
    print(f"Iteration {iteration + 1:<3} Mean top fitness: {mean_fitness:.2f}")
    print(f"Best fitness: {top_candidates[0][1]:.2f}")







SB3 and ProcgenEnv

Some environments like Procgen [https://github.com/openai/procgen] already produce a vectorized
environment (see discussion in issue #314 [https://github.com/DLR-RM/stable-baselines3/issues/314]). In order to use it with SB3, you must wrap it in a VecMonitor wrapper which will also allow
to keep track of the agent progress.

from procgen import ProcgenEnv

from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import VecExtractDictObs, VecMonitor

# ProcgenEnv is already vectorized
venv = ProcgenEnv(num_envs=2, env_name="starpilot")

# To use only part of the observation:
# venv = VecExtractDictObs(venv, "rgb")

# Wrap with a VecMonitor to collect stats and avoid errors
venv = VecMonitor(venv=venv)

model = PPO("MultiInputPolicy", venv, verbose=1)
model.learn(10_000)







SB3 with EnvPool or Isaac Gym

Just like Procgen (see above), EnvPool [https://github.com/sail-sg/envpool] and Isaac Gym [https://github.com/NVIDIA-Omniverse/IsaacGymEnvs] accelerate the environment by
already providing a vectorized implementation.

To use SB3 with those tools, you must wrap the env with tool’s specific VecEnvWrapper that will pre-process the data for SB3,
you can find links to those wrappers in issue #772 [https://github.com/DLR-RM/stable-baselines3/issues/772#issuecomment-1048657002].



Record a Video

Record a mp4 video (here using a random agent).


Note

It requires ffmpeg or avconv to be installed on the machine.



import gymnasium as gym
from stable_baselines3.common.vec_env import VecVideoRecorder, DummyVecEnv

env_id = "CartPole-v1"
video_folder = "logs/videos/"
video_length = 100

vec_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")])

obs = vec_env.reset()

# Record the video starting at the first step
vec_env = VecVideoRecorder(vec_env, video_folder,
                       record_video_trigger=lambda x: x == 0, video_length=video_length,
                       name_prefix=f"random-agent-{env_id}")

vec_env.reset()
for _ in range(video_length + 1):
  action = [vec_env.action_space.sample()]
  obs, _, _, _ = vec_env.step(action)
# Save the video
vec_env.close()







Bonus: Make a GIF of a Trained Agent

import imageio
import numpy as np

from stable_baselines3 import A2C

model = A2C("MlpPolicy", "LunarLander-v2").learn(100_000)

images = []
obs = model.env.reset()
img = model.env.render(mode="rgb_array")
for i in range(350):
    images.append(img)
    action, _ = model.predict(obs)
    obs, _, _ ,_ = model.env.step(action)
    img = model.env.render(mode="rgb_array")

imageio.mimsave("lander_a2c.gif", [np.array(img) for i, img in enumerate(images) if i%2 == 0], fps=29)









            

          

      

      

    

  

    
      
          
            
  
Vectorized Environments

Vectorized Environments are a method for stacking multiple independent environments into a single environment.
Instead of training an RL agent on 1 environment per step, it allows us to train it on n environments per step.
Because of this, actions passed to the environment are now a vector (of dimension n).
It is the same for observations, rewards and end of episode signals (dones).
In the case of non-array observation spaces such as Dict or Tuple, where different sub-spaces
may have different shapes, the sub-observations are vectors (of dimension n).



	Name

	Box

	Discrete

	Dict

	Tuple

	Multi Processing





	DummyVecEnv

	✔️

	✔️

	✔️

	✔️

	❌️



	SubprocVecEnv

	✔️

	✔️

	✔️

	✔️

	✔️







Note

Vectorized environments are required when using wrappers for frame-stacking or normalization.




Note

When using vectorized environments, the environments are automatically reset at the end of each episode.
Thus, the observation returned for the i-th environment when done[i] is true will in fact be the first observation of the next episode, not the last observation of the episode that has just terminated.
You can access the “real” final observation of the terminated episode—that is, the one that accompanied the done event provided by the underlying environment—using the terminal_observation keys in the info dicts returned by the VecEnv.




Warning

When defining a custom VecEnv (for instance, using gym3 ProcgenEnv), you should provide terminal_observation keys in the info dicts returned by the VecEnv
(cf. note above).




Warning

When using SubprocVecEnv, users must wrap the code in an if __name__ == "__main__": if using the forkserver or spawn start method (default on Windows).
On Linux, the default start method is fork which is not thread safe and can create deadlocks.

For more information, see Python’s multiprocessing guidelines [https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods].




VecEnv API vs Gym API

For consistency across Stable-Baselines3 (SB3) versions and because of its special requirements and features,
SB3 VecEnv API is not the same as Gym API.
SB3 VecEnv API is actually close to Gym 0.21 API but differs to Gym 0.26+ API:


	the reset() method only returns the observation (obs = vec_env.reset()) and not a tuple, the info at reset are stored in vec_env.reset_infos.


	only the initial call to vec_env.reset() is required, environments are reset automatically afterward (and reset_infos is updated automatically).


	the vec_env.step(actions) method expects an array as input
(with a batch size corresponding to the number of environments) and returns a 4-tuple (and not a 5-tuple): obs, rewards, dones, infos instead of obs, reward, terminated, truncated, info
where dones = terminated or truncated (for each env).
obs, rewards, dones are numpy arrays with shape (n_envs, shape_for_single_env) (so with a batch dimension).
Additional information is passed via the infos value which is a list of dictionaries.


	at the end of an episode, infos[env_idx]["TimeLimit.truncated"] = truncated and not terminated
tells the user if an episode was truncated or not:
you should bootstrap if infos[env_idx]["TimeLimit.truncated"] is True (episode over due to a timeout/truncation)
or dones[env_idx] is False (episode not finished).
Note: compared to Gym 0.26+ infos[env_idx]["TimeLimit.truncated"] and terminated are mutually exclusive [https://github.com/openai/gym/issues/3102].
The conversion from SB3 to Gym API is

# done is True at the end of an episode
# dones[env_idx] = terminated[env_idx] or truncated[env_idx]
# In SB3, truncated and terminated are mutually exclusive
# infos[env_idx]["TimeLimit.truncated"] = truncated and not terminated
# terminated[env_idx] tells you whether you should bootstrap or not:
# when the episode has not ended or when the termination was a timeout/truncation
terminated[env_idx] = dones[env_idx] and not infos[env_idx]["TimeLimit.truncated"]
should_bootstrap[env_idx] = not terminated[env_idx]







	at the end of an episode, because the environment resets automatically,
we provide infos[env_idx]["terminal_observation"] which contains the last observation
of an episode (and can be used when bootstrapping, see note in the previous section)


	to overcome the current Gymnasium limitation (only one render mode allowed per env instance, see issue #100 [https://github.com/Farama-Foundation/Gymnasium/issues/100]),
we recommend using render_mode="rgb_array" since we can both have the image as a numpy array and display it with OpenCV.
if no mode is passed or mode="rgb_array" is passed when calling vec_env.render then we use the default mode, otherwise, we use the OpenCV display.
Note that if render_mode != "rgb_array", you can only call vec_env.render() (without argument or with mode=env.render_mode).


	the reset() method doesn’t take any parameter. If you want to seed the pseudo-random generator,
you should call vec_env.seed(seed=seed) and obs = vec_env.reset() afterward.


	methods and attributes of the underlying Gym envs can be accessed, called and set using vec_env.get_attr("attribute_name"),
vec_env.env_method("method_name", args1, args2, kwargs1=kwargs1) and vec_env.set_attr("attribute_name", new_value).






Vectorized Environments Wrappers

If you want to alter or augment a VecEnv without redefining it completely (e.g. stack multiple frames, monitor the VecEnv, normalize the observation, …), you can use VecEnvWrapper for that.
They are the vectorized equivalents (i.e., they act on multiple environments at the same time) of gym.Wrapper.

You can find below an example for extracting one key from the observation:

import numpy as np

from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvStepReturn, VecEnvWrapper


class VecExtractDictObs(VecEnvWrapper):
    """
    A vectorized wrapper for filtering a specific key from dictionary observations.
    Similar to Gym's FilterObservation wrapper:
        https://github.com/openai/gym/blob/master/gym/wrappers/filter_observation.py

    :param venv: The vectorized environment
    :param key: The key of the dictionary observation
    """

    def __init__(self, venv: VecEnv, key: str):
        self.key = key
        super().__init__(venv=venv, observation_space=venv.observation_space.spaces[self.key])

    def reset(self) -> np.ndarray:
        obs = self.venv.reset()
        return obs[self.key]

    def step_async(self, actions: np.ndarray) -> None:
        self.venv.step_async(actions)

    def step_wait(self) -> VecEnvStepReturn:
        obs, reward, done, info = self.venv.step_wait()
        return obs[self.key], reward, done, info

env = DummyVecEnv([lambda: gym.make("FetchReach-v1")])
# Wrap the VecEnv
env = VecExtractDictObs(env, key="observation")







VecEnv


	
class stable_baselines3.common.vec_env.VecEnv(num_envs, observation_space, action_space)

	An abstract asynchronous, vectorized environment.


	Parameters:

	
	num_envs (int) – Number of environments


	observation_space (Space) – Observation space


	action_space (Space) – Action space









	
abstract close()

	Clean up the environment’s resources.


	Return type:

	None










	
abstract env_is_wrapped(wrapper_class, indices=None)

	Check if environments are wrapped with a given wrapper.


	Parameters:

	
	method_name – The name of the environment method to invoke.


	indices (Union[None, int, Iterable[int]]) – Indices of envs whose method to call


	method_args – Any positional arguments to provide in the call


	method_kwargs – Any keyword arguments to provide in the call






	Return type:

	List[bool]



	Returns:

	True if the env is wrapped, False otherwise, for each env queried.










	
abstract env_method(method_name, *method_args, indices=None, **method_kwargs)

	Call instance methods of vectorized environments.


	Parameters:

	
	method_name (str) – The name of the environment method to invoke.


	indices (Union[None, int, Iterable[int]]) – Indices of envs whose method to call


	method_args – Any positional arguments to provide in the call


	method_kwargs – Any keyword arguments to provide in the call






	Return type:

	List[Any]



	Returns:

	List of items returned by the environment’s method call










	
abstract get_attr(attr_name, indices=None)

	Return attribute from vectorized environment.


	Parameters:

	
	attr_name (str) – The name of the attribute whose value to return


	indices (Union[None, int, Iterable[int]]) – Indices of envs to get attribute from






	Return type:

	List[Any]



	Returns:

	List of values of ‘attr_name’ in all environments










	
get_images()

	Return RGB images from each environment when available


	Return type:

	Sequence[Optional[ndarray]]










	
getattr_depth_check(name, already_found)

	Check if an attribute reference is being hidden in a recursive call to __getattr__


	Parameters:

	
	name (str) – name of attribute to check for


	already_found (bool) – whether this attribute has already been found in a wrapper






	Return type:

	Optional[str]



	Returns:

	name of module whose attribute is being shadowed, if any.










	
render(mode=None)

	Gym environment rendering


	Parameters:

	mode (Optional[str]) – the rendering type



	Return type:

	Optional[ndarray]










	
abstract reset()

	Reset all the environments and return an array of
observations, or a tuple of observation arrays.

If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.


	Return type:

	Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]



	Returns:

	observation










	
seed(seed=None)

	Sets the random seeds for all environments, based on a given seed.
Each individual environment will still get its own seed, by incrementing the given seed.
WARNING: since gym 0.26, those seeds will only be passed to the environment
at the next reset.


	Parameters:

	seed (Optional[int]) – The random seed. May be None for completely random seeding.



	Return type:

	Sequence[Optional[int]]



	Returns:

	Returns a list containing the seeds for each individual env.
Note that all list elements may be None, if the env does not return anything when being seeded.










	
abstract set_attr(attr_name, value, indices=None)

	Set attribute inside vectorized environments.


	Parameters:

	
	attr_name (str) – The name of attribute to assign new value


	value (Any) – Value to assign to attr_name


	indices (Union[None, int, Iterable[int]]) – Indices of envs to assign value






	Return type:

	None



	Returns:

	










	
step(actions)

	Step the environments with the given action


	Parameters:

	actions (ndarray) – the action



	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]



	Returns:

	observation, reward, done, information










	
abstract step_async(actions)

	Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.

You should not call this if a step_async run is
already pending.


	Return type:

	None










	
abstract step_wait()

	Wait for the step taken with step_async().


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]



	Returns:

	observation, reward, done, information















DummyVecEnv


	
class stable_baselines3.common.vec_env.DummyVecEnv(env_fns)

	Creates a simple vectorized wrapper for multiple environments, calling each environment in sequence on the current
Python process. This is useful for computationally simple environment such as Cartpole-v1,
as the overhead of multiprocess or multithread outweighs the environment computation time.
This can also be used for RL methods that
require a vectorized environment, but that you want a single environments to train with.


	Parameters:

	env_fns (List[Callable[[], Env]]) – a list of functions
that return environments to vectorize



	Raises:

	ValueError – If the same environment instance is passed as the output of two or more different env_fn.






	
close()

	Clean up the environment’s resources.


	Return type:

	None










	
env_is_wrapped(wrapper_class, indices=None)

	Check if worker environments are wrapped with a given wrapper


	Return type:

	List[bool]










	
env_method(method_name, *method_args, indices=None, **method_kwargs)

	Call instance methods of vectorized environments.


	Return type:

	List[Any]










	
get_attr(attr_name, indices=None)

	Return attribute from vectorized environment (see base class).


	Return type:

	List[Any]










	
get_images()

	Return RGB images from each environment when available


	Return type:

	Sequence[Optional[ndarray]]










	
render(mode=None)

	Gym environment rendering. If there are multiple environments then
they are tiled together in one image via BaseVecEnv.render().


	Parameters:

	mode (Optional[str]) – The rendering type.



	Return type:

	Optional[ndarray]










	
reset()

	Reset all the environments and return an array of
observations, or a tuple of observation arrays.

If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.


	Return type:

	Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]



	Returns:

	observation










	
set_attr(attr_name, value, indices=None)

	Set attribute inside vectorized environments (see base class).


	Return type:

	None










	
step_async(actions)

	Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.

You should not call this if a step_async run is
already pending.


	Return type:

	None










	
step_wait()

	Wait for the step taken with step_async().


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]



	Returns:

	observation, reward, done, information















SubprocVecEnv


	
class stable_baselines3.common.vec_env.SubprocVecEnv(env_fns, start_method=None)

	Creates a multiprocess vectorized wrapper for multiple environments, distributing each environment to its own
process, allowing significant speed up when the environment is computationally complex.

For performance reasons, if your environment is not IO bound, the number of environments should not exceed the
number of logical cores on your CPU.


Warning

Only ‘forkserver’ and ‘spawn’ start methods are thread-safe,
which is important when TensorFlow sessions or other non thread-safe
libraries are used in the parent (see issue #217). However, compared to
‘fork’ they incur a small start-up cost and have restrictions on
global variables. With those methods, users must wrap the code in an
if __name__ == "__main__": block.
For more information, see the multiprocessing documentation.




	Parameters:

	
	env_fns (List[Callable[[], Env]]) – Environments to run in subprocesses


	start_method (Optional[str]) – method used to start the subprocesses.
Must be one of the methods returned by multiprocessing.get_all_start_methods().
Defaults to ‘forkserver’ on available platforms, and ‘spawn’ otherwise.









	
close()

	Clean up the environment’s resources.


	Return type:

	None










	
env_is_wrapped(wrapper_class, indices=None)

	Check if worker environments are wrapped with a given wrapper


	Return type:

	List[bool]










	
env_method(method_name, *method_args, indices=None, **method_kwargs)

	Call instance methods of vectorized environments.


	Return type:

	List[Any]










	
get_attr(attr_name, indices=None)

	Return attribute from vectorized environment (see base class).


	Return type:

	List[Any]










	
get_images()

	Return RGB images from each environment when available


	Return type:

	Sequence[Optional[ndarray]]










	
reset()

	Reset all the environments and return an array of
observations, or a tuple of observation arrays.

If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.


	Return type:

	Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]



	Returns:

	observation










	
set_attr(attr_name, value, indices=None)

	Set attribute inside vectorized environments (see base class).


	Return type:

	None










	
step_async(actions)

	Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.

You should not call this if a step_async run is
already pending.


	Return type:

	None










	
step_wait()

	Wait for the step taken with step_async().


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]



	Returns:

	observation, reward, done, information















Wrappers


VecFrameStack


	
class stable_baselines3.common.vec_env.VecFrameStack(venv, n_stack, channels_order=None)

	Frame stacking wrapper for vectorized environment. Designed for image observations.


	Parameters:

	
	venv (VecEnv) – Vectorized environment to wrap


	n_stack (int) – Number of frames to stack


	channels_order (Union[str, Mapping[str, str], None]) – If “first”, stack on first image dimension. If “last”, stack on last dimension.
If None, automatically detect channel to stack over in case of image observation or default to “last” (default).
Alternatively channels_order can be a dictionary which can be used with environments with Dict observation spaces









	
reset()

	Reset all environments


	Return type:

	Union[ndarray, Dict[str, ndarray]]










	
step_wait()

	Wait for the step taken with step_async().


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray]], ndarray, ndarray, List[Dict[str, Any]]]



	Returns:

	observation, reward, done, information















StackedObservations


	
class stable_baselines3.common.vec_env.stacked_observations.StackedObservations(num_envs, n_stack, observation_space, channels_order=None)

	Frame stacking wrapper for data.

Dimension to stack over is either first (channels-first) or last (channels-last), which is detected automatically using
common.preprocessing.is_image_space_channels_first if observation is an image space.


	Parameters:

	
	num_envs (int) – Number of environments


	n_stack (int) – Number of frames to stack


	observation_space (Union[Box, Dict]) – Environment observation space


	channels_order (Union[str, Mapping[str, Optional[str]], None]) – If “first”, stack on first image dimension. If “last”, stack on last dimension.
If None, automatically detect channel to stack over in case of image observation or default to “last”.
For Dict space, channels_order can also be a dictionary.









	
static compute_stacking(n_stack, observation_space, channels_order=None)

	Calculates the parameters in order to stack observations


	Parameters:

	
	n_stack (int) – Number of observations to stack


	observation_space (Box) – Observation space


	channels_order (Optional[str]) – Order of the channels






	Return type:

	Tuple[bool, int, Tuple[int, ...], int]



	Returns:

	Tuple of channels_first, stack_dimension, stackedobs, repeat_axis










	
reset(observation)

	Reset the stacked_obs, add the reset observation to the stack, and return the stack.


	Parameters:

	observation (TypeVar(TObs, ndarray, Dict[str, ndarray])) – Reset observation



	Return type:

	TypeVar(TObs, ndarray, Dict[str, ndarray])



	Returns:

	The stacked reset observation










	
update(observations, dones, infos)

	Add the observations to the stack and use the dones to update the infos.


	Parameters:

	
	observations (TypeVar(TObs, ndarray, Dict[str, ndarray])) – Observations


	dones (ndarray) – Dones


	infos (List[Dict[str, Any]]) – Infos






	Return type:

	Tuple[TypeVar(TObs, ndarray, Dict[str, ndarray]), List[Dict[str, Any]]]



	Returns:

	Tuple of the stacked observations and the updated infos















VecNormalize


	
class stable_baselines3.common.vec_env.VecNormalize(venv, training=True, norm_obs=True, norm_reward=True, clip_obs=10.0, clip_reward=10.0, gamma=0.99, epsilon=1e-08, norm_obs_keys=None)

	A moving average, normalizing wrapper for vectorized environment.
has support for saving/loading moving average,


	Parameters:

	
	venv (VecEnv) – the vectorized environment to wrap


	training (bool) – Whether to update or not the moving average


	norm_obs (bool) – Whether to normalize observation or not (default: True)


	norm_reward (bool) – Whether to normalize rewards or not (default: True)


	clip_obs (float) – Max absolute value for observation


	clip_reward (float) – Max value absolute for discounted reward


	gamma (float) – discount factor


	epsilon (float) – To avoid division by zero


	norm_obs_keys (Optional[List[str]]) – Which keys from observation dict to normalize.
If not specified, all keys will be normalized.









	
get_original_obs()

	Returns an unnormalized version of the observations from the most recent
step or reset.


	Return type:

	Union[ndarray, Dict[str, ndarray]]










	
get_original_reward()

	Returns an unnormalized version of the rewards from the most recent step.


	Return type:

	ndarray










	
static load(load_path, venv)

	Loads a saved VecNormalize object.


	Parameters:

	
	load_path (str) – the path to load from.


	venv (VecEnv) – the VecEnv to wrap.






	Return type:

	VecNormalize



	Returns:

	










	
normalize_obs(obs)

	Normalize observations using this VecNormalize’s observations statistics.
Calling this method does not update statistics.


	Return type:

	Union[ndarray, Dict[str, ndarray]]










	
normalize_reward(reward)

	Normalize rewards using this VecNormalize’s rewards statistics.
Calling this method does not update statistics.


	Return type:

	ndarray










	
reset()

	Reset all environments
:rtype: Union[ndarray, Dict[str, ndarray]]
:return: first observation of the episode






	
save(save_path)

	Save current VecNormalize object with
all running statistics and settings (e.g. clip_obs)


	Parameters:

	save_path (str) – The path to save to



	Return type:

	None










	
set_venv(venv)

	Sets the vector environment to wrap to venv.

Also sets attributes derived from this such as num_env.


	Parameters:

	venv (VecEnv) – 



	Return type:

	None










	
step_wait()

	Apply sequence of actions to sequence of environments
actions -> (observations, rewards, dones)

where dones is a boolean vector indicating whether each element is new.


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]















VecVideoRecorder


	
class stable_baselines3.common.vec_env.VecVideoRecorder(venv, video_folder, record_video_trigger, video_length=200, name_prefix='rl-video')

	Wraps a VecEnv or VecEnvWrapper object to record rendered image as mp4 video.
It requires ffmpeg or avconv to be installed on the machine.


	Parameters:

	
	venv (VecEnv) – 


	video_folder (str) – Where to save videos


	record_video_trigger (Callable[[int], bool]) – Function that defines when to start recording.
The function takes the current number of step,
and returns whether we should start recording or not.


	video_length (int) – Length of recorded videos


	name_prefix (str) – Prefix to the video name









	
close()

	Clean up the environment’s resources.


	Return type:

	None










	
reset()

	Reset all the environments and return an array of
observations, or a tuple of observation arrays.

If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.


	Return type:

	Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]



	Returns:

	observation










	
step_wait()

	Wait for the step taken with step_async().


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]



	Returns:

	observation, reward, done, information















VecCheckNan


	
class stable_baselines3.common.vec_env.VecCheckNan(venv, raise_exception=False, warn_once=True, check_inf=True)

	NaN and inf checking wrapper for vectorized environment, will raise a warning by default,
allowing you to know from what the NaN of inf originated from.


	Parameters:

	
	venv (VecEnv) – the vectorized environment to wrap


	raise_exception (bool) – Whether to raise a ValueError, instead of a UserWarning


	warn_once (bool) – Whether to only warn once.


	check_inf (bool) – Whether to check for +inf or -inf as well









	
check_array_value(name, value)

	Check for inf and NaN for a single numpy array.


	Parameters:

	
	name (str) – Name of the value being check


	value (ndarray) – Value (numpy array) to check






	Return type:

	List[Tuple[str, str]]



	Returns:

	A list of issues found.










	
reset()

	Reset all the environments and return an array of
observations, or a tuple of observation arrays.

If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.


	Return type:

	Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]



	Returns:

	observation










	
step_async(actions)

	Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.

You should not call this if a step_async run is
already pending.


	Return type:

	None










	
step_wait()

	Wait for the step taken with step_async().


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]



	Returns:

	observation, reward, done, information















VecTransposeImage


	
class stable_baselines3.common.vec_env.VecTransposeImage(venv, skip=False)

	Re-order channels, from HxWxC to CxHxW.
It is required for PyTorch convolution layers.


	Parameters:

	
	venv (VecEnv) – 


	skip (bool) – Skip this wrapper if needed as we rely on heuristic to apply it or not,
which may result in unwanted behavior, see GH issue #671.









	
close()

	Clean up the environment’s resources.


	Return type:

	None










	
reset()

	Reset all environments


	Return type:

	Union[ndarray, Dict]










	
step_wait()

	Wait for the step taken with step_async().


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]



	Returns:

	observation, reward, done, information










	
static transpose_image(image)

	Transpose an image or batch of images (re-order channels).


	Parameters:

	image (ndarray) – 



	Return type:

	ndarray



	Returns:

	










	
transpose_observations(observations)

	Transpose (if needed) and return new observations.


	Parameters:

	observations (Union[ndarray, Dict]) – 



	Return type:

	Union[ndarray, Dict]



	Returns:

	Transposed observations










	
static transpose_space(observation_space, key='')

	Transpose an observation space (re-order channels).


	Parameters:

	
	observation_space (Box) – 


	key (str) – In case of dictionary space, the key of the observation space.






	Return type:

	Box



	Returns:

	















VecMonitor


	
class stable_baselines3.common.vec_env.VecMonitor(venv, filename=None, info_keywords=())

	A vectorized monitor wrapper for vectorized Gym environments,
it is used to record the episode reward, length, time and other data.

Some environments like openai/procgen [https://github.com/openai/procgen]
or gym3 [https://github.com/openai/gym3] directly initialize the
vectorized environments, without giving us a chance to use the Monitor
wrapper. So this class simply does the job of the Monitor wrapper on
a vectorized level.


	Parameters:

	
	venv (VecEnv) – The vectorized environment


	filename (Optional[str]) – the location to save a log file, can be None for no log


	info_keywords (Tuple[str, ...]) – extra information to log, from the information return of env.step()









	
close()

	Clean up the environment’s resources.


	Return type:

	None










	
reset()

	Reset all the environments and return an array of
observations, or a tuple of observation arrays.

If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.


	Return type:

	Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]]



	Returns:

	observation










	
step_wait()

	Wait for the step taken with step_async().


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]



	Returns:

	observation, reward, done, information















VecExtractDictObs


	
class stable_baselines3.common.vec_env.VecExtractDictObs(venv, key)

	A vectorized wrapper for extracting dictionary observations.


	Parameters:

	
	venv (VecEnv) – The vectorized environment


	key (str) – The key of the dictionary observation









	
reset()

	Reset all the environments and return an array of
observations, or a tuple of observation arrays.

If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.


	Return type:

	ndarray



	Returns:

	observation










	
step_wait()

	Wait for the step taken with step_async().


	Return type:

	Tuple[Union[ndarray, Dict[str, ndarray], Tuple[ndarray, ...]], ndarray, ndarray, List[Dict]]



	Returns:

	observation, reward, done, information


















            

          

      

      

    

  

    
      
          
            
  
Policy Networks

Stable Baselines3 provides policy networks for images (CnnPolicies),
other type of input features (MlpPolicies) and multiple different inputs (MultiInputPolicies).


Warning

For A2C and PPO, continuous actions are clipped during training and testing
(to avoid out of bound error). SAC, DDPG and TD3 squash the action, using a tanh() transformation,
which handles bounds more correctly.




SB3 Policy

SB3 networks are separated into two mains parts (see figure below):


	A features extractor (usually shared between actor and critic when applicable, to save computation)
whose role is to extract features (i.e. convert to a feature vector) from high-dimensional observations, for instance, a CNN that extracts features from images.
This is the features_extractor_class parameter. You can change the default parameters of that features extractor
by passing a features_extractor_kwargs parameter.


	A (fully-connected) network that maps the features to actions/value. Its architecture is controlled by the net_arch parameter.





Note

All observations are first pre-processed (e.g. images are normalized, discrete obs are converted to one-hot vectors, …) before being fed to the features extractor.
In the case of vector observations, the features extractor is just a Flatten layer.



[image: ../_images/net_arch.png]
SB3 policies are usually composed of several networks (actor/critic networks + target networks when applicable) together
with the associated optimizers.

Each of these network have a features extractor followed by a fully-connected network.


Note

When we refer to “policy” in Stable-Baselines3, this is usually an abuse of language compared to RL terminology.
In SB3, “policy” refers to the class that handles all the networks useful for training,
so not only the network used to predict actions (the “learned controller”).



[image: ../_images/sb3_policy.png]


Default Network Architecture

The default network architecture used by SB3 depends on the algorithm and the observation space.
You can visualize the architecture by printing model.policy (see issue #329 [https://github.com/DLR-RM/stable-baselines3/issues/329]).

For 1D observation space, a 2 layers fully connected net is used with:


	64 units (per layer) for PPO/A2C/DQN


	256 units for SAC


	[400, 300] units for TD3/DDPG (values are taken from the original TD3 paper)




For image observation spaces, the “Nature CNN” (see code for more details) is used for feature extraction, and SAC/TD3 also keeps the same fully connected network after it.
The other algorithms only have a linear layer after the CNN.
The CNN is shared between actor and critic for A2C/PPO (on-policy algorithms) to reduce computation.
Off-policy algorithms (TD3, DDPG, SAC, …) have separate feature extractors: one for the actor and one for the critic, since the best performance is obtained with this configuration.

For mixed observations (dictionary observations), the two architectures from above are used, i.e., CNN for images and then two layers fully-connected network
(with a smaller output size for the CNN).



Custom Network Architecture

One way of customising the policy network architecture is to pass arguments when creating the model,
using policy_kwargs parameter:


Note

An extra linear layer will be added on top of the layers specified in net_arch, in order to have the right output dimensions and activation functions (e.g. Softmax for discrete actions).

In the following example, as CartPole’s action space has a dimension of 2, the final dimensions of the net_arch’s layers will be:

        obs
        <4>
   /            \
 <32>          <32>
  |              |
 <32>          <32>
  |              |
 <2>            <1>
action         value







import gymnasium as gym
import torch as th

from stable_baselines3 import PPO

# Custom actor (pi) and value function (vf) networks
# of two layers of size 32 each with Relu activation function
# Note: an extra linear layer will be added on top of the pi and the vf nets, respectively
policy_kwargs = dict(activation_fn=th.nn.ReLU,
                     net_arch=dict(pi=[32, 32], vf=[32, 32]))
# Create the agent
model = PPO("MlpPolicy", "CartPole-v1", policy_kwargs=policy_kwargs, verbose=1)
# Retrieve the environment
env = model.get_env()
# Train the agent
model.learn(total_timesteps=20_000)
# Save the agent
model.save("ppo_cartpole")

del model
# the policy_kwargs are automatically loaded
model = PPO.load("ppo_cartpole", env=env)







Custom Feature Extractor

If you want to have a custom features extractor (e.g. custom CNN when using images), you can define class
that derives from BaseFeaturesExtractor and then pass it to the model when training.


Note

For on-policy algorithms, the features extractor is shared by default between the actor and the critic to save computation (when applicable).
However, this can be changed setting share_features_extractor=False in the
policy_kwargs (both for on-policy and off-policy algorithms).



import torch as th
import torch.nn as nn
from gymnasium import spaces

from stable_baselines3 import PPO
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor


class CustomCNN(BaseFeaturesExtractor):
    """
    :param observation_space: (gym.Space)
    :param features_dim: (int) Number of features extracted.
        This corresponds to the number of unit for the last layer.
    """

    def __init__(self, observation_space: spaces.Box, features_dim: int = 256):
        super().__init__(observation_space, features_dim)
        # We assume CxHxW images (channels first)
        # Re-ordering will be done by pre-preprocessing or wrapper
        n_input_channels = observation_space.shape[0]
        self.cnn = nn.Sequential(
            nn.Conv2d(n_input_channels, 32, kernel_size=8, stride=4, padding=0),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),
            nn.ReLU(),
            nn.Flatten(),
        )

        # Compute shape by doing one forward pass
        with th.no_grad():
            n_flatten = self.cnn(
                th.as_tensor(observation_space.sample()[None]).float()
            ).shape[1]

        self.linear = nn.Sequential(nn.Linear(n_flatten, features_dim), nn.ReLU())

    def forward(self, observations: th.Tensor) -> th.Tensor:
        return self.linear(self.cnn(observations))

policy_kwargs = dict(
    features_extractor_class=CustomCNN,
    features_extractor_kwargs=dict(features_dim=128),
)
model = PPO("CnnPolicy", "BreakoutNoFrameskip-v4", policy_kwargs=policy_kwargs, verbose=1)
model.learn(1000)







Multiple Inputs and Dictionary Observations

Stable Baselines3 supports handling of multiple inputs by using Dict Gym space. This can be done using
MultiInputPolicy, which by default uses the CombinedExtractor features extractor to turn multiple
inputs into a single vector, handled by the net_arch network.

By default, CombinedExtractor processes multiple inputs as follows:


	If input is an image (automatically detected, see common.preprocessing.is_image_space), process image with Nature Atari CNN network and
output a latent vector of size 256.


	If input is not an image, flatten it (no layers).


	Concatenate all previous vectors into one long vector and pass it to policy.




Much like above, you can define custom features extractors. The following example assumes the environment has two keys in the
observation space dictionary: “image” is a (1,H,W) image (channel first), and “vector” is a (D,) dimensional vector. We process “image” with a simple
downsampling and “vector” with a single linear layer.

import gymnasium as gym
import torch as th
from torch import nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

class CustomCombinedExtractor(BaseFeaturesExtractor):
    def __init__(self, observation_space: spaces.Dict):
        # We do not know features-dim here before going over all the items,
        # so put something dummy for now. PyTorch requires calling
        # nn.Module.__init__ before adding modules
        super().__init__(observation_space, features_dim=1)

        extractors = {}

        total_concat_size = 0
        # We need to know size of the output of this extractor,
        # so go over all the spaces and compute output feature sizes
        for key, subspace in observation_space.spaces.items():
            if key == "image":
                # We will just downsample one channel of the image by 4x4 and flatten.
                # Assume the image is single-channel (subspace.shape[0] == 0)
                extractors[key] = nn.Sequential(nn.MaxPool2d(4), nn.Flatten())
                total_concat_size += subspace.shape[1] // 4 * subspace.shape[2] // 4
            elif key == "vector":
                # Run through a simple MLP
                extractors[key] = nn.Linear(subspace.shape[0], 16)
                total_concat_size += 16

        self.extractors = nn.ModuleDict(extractors)

        # Update the features dim manually
        self._features_dim = total_concat_size

    def forward(self, observations) -> th.Tensor:
        encoded_tensor_list = []

        # self.extractors contain nn.Modules that do all the processing.
        for key, extractor in self.extractors.items():
            encoded_tensor_list.append(extractor(observations[key]))
        # Return a (B, self._features_dim) PyTorch tensor, where B is batch dimension.
        return th.cat(encoded_tensor_list, dim=1)







On-Policy Algorithms


Custom Networks

If you need a network architecture that is different for the actor and the critic when using PPO, A2C or TRPO,
you can pass a dictionary of the following structure: dict(pi=[<actor network architecture>], vf=[<critic network architecture>]).

For example, if you want a different architecture for the actor (aka pi) and the critic ( value-function aka vf) networks,
then you can specify net_arch=dict(pi=[32, 32], vf=[64, 64]).

Otherwise, to have actor and critic that share the same network architecture,
you only need to specify net_arch=[128, 128] (here, two hidden layers of 128 units each, this is equivalent to net_arch=dict(pi=[128, 128], vf=[128, 128])).

If shared layers are needed, you need to implement a custom policy network (see advanced example below).


Examples

Same architecture for actor and critic with two layers of size 128: net_arch=[128, 128]

        obs
   /            \
 <128>          <128>
  |              |
 <128>          <128>
  |              |
action         value





Different architectures for actor and critic: net_arch=dict(pi=[32, 32], vf=[64, 64])

        obs
   /            \
 <32>          <64>
  |              |
 <32>          <64>
  |              |
action         value







Advanced Example

If your task requires even more granular control over the policy/value architecture, you can redefine the policy directly:

from typing import Callable, Dict, List, Optional, Tuple, Type, Union

from gymnasium import spaces
import torch as th
from torch import nn

from stable_baselines3 import PPO
from stable_baselines3.common.policies import ActorCriticPolicy


class CustomNetwork(nn.Module):
    """
    Custom network for policy and value function.
    It receives as input the features extracted by the features extractor.

    :param feature_dim: dimension of the features extracted with the features_extractor (e.g. features from a CNN)
    :param last_layer_dim_pi: (int) number of units for the last layer of the policy network
    :param last_layer_dim_vf: (int) number of units for the last layer of the value network
    """

    def __init__(
        self,
        feature_dim: int,
        last_layer_dim_pi: int = 64,
        last_layer_dim_vf: int = 64,
    ):
        super().__init__()

        # IMPORTANT:
        # Save output dimensions, used to create the distributions
        self.latent_dim_pi = last_layer_dim_pi
        self.latent_dim_vf = last_layer_dim_vf

        # Policy network
        self.policy_net = nn.Sequential(
            nn.Linear(feature_dim, last_layer_dim_pi), nn.ReLU()
        )
        # Value network
        self.value_net = nn.Sequential(
            nn.Linear(feature_dim, last_layer_dim_vf), nn.ReLU()
        )

    def forward(self, features: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
        """
        :return: (th.Tensor, th.Tensor) latent_policy, latent_value of the specified network.
            If all layers are shared, then ``latent_policy == latent_value``
        """
        return self.forward_actor(features), self.forward_critic(features)

    def forward_actor(self, features: th.Tensor) -> th.Tensor:
        return self.policy_net(features)

    def forward_critic(self, features: th.Tensor) -> th.Tensor:
        return self.value_net(features)


class CustomActorCriticPolicy(ActorCriticPolicy):
    def __init__(
        self,
        observation_space: spaces.Space,
        action_space: spaces.Space,
        lr_schedule: Callable[[float], float],
        *args,
        **kwargs,
    ):
        # Disable orthogonal initialization
        kwargs["ortho_init"] = False
        super().__init__(
            observation_space,
            action_space,
            lr_schedule,
            # Pass remaining arguments to base class
            *args,
            **kwargs,
        )


    def _build_mlp_extractor(self) -> None:
        self.mlp_extractor = CustomNetwork(self.features_dim)


model = PPO(CustomActorCriticPolicy, "CartPole-v1", verbose=1)
model.learn(5000)









Off-Policy Algorithms

If you need a network architecture that is different for the actor and the critic when using SAC, DDPG, TQC or TD3,
you can pass a dictionary of the following structure: dict(pi=[<actor network architecture>], qf=[<critic network architecture>]).

For example, if you want a different architecture for the actor (aka pi) and the critic (Q-function aka qf) networks,
then you can specify net_arch=dict(pi=[64, 64], qf=[400, 300]).

Otherwise, to have actor and critic that share the same network architecture,
you only need to specify net_arch=[256, 256] (here, two hidden layers of 256 units each).


Note

For advanced customization of off-policy algorithms policies, please take a look at the code.
A good understanding of the algorithm used is required, see discussion in issue #425 [https://github.com/DLR-RM/stable-baselines3/issues/425]



from stable_baselines3 import SAC

# Custom actor architecture with two layers of 64 units each
# Custom critic architecture with two layers of 400 and 300 units
policy_kwargs = dict(net_arch=dict(pi=[64, 64], qf=[400, 300]))
# Create the agent
model = SAC("MlpPolicy", "Pendulum-v1", policy_kwargs=policy_kwargs, verbose=1)
model.learn(5000)









            

          

      

      

    

  

    
      
          
            
  
Using Custom Environments

To use the RL baselines with custom environments, they just need to follow the gymnasium  interface [https://gymnasium.farama.org/tutorials/gymnasium_basics/environment_creation/#sphx-glr-tutorials-gymnasium-basics-environment-creation-py].
That is to say, your environment must implement the following methods (and inherits from Gym Class):


Note

If you are using images as input, the observation must be of type np.uint8 and be contained in [0, 255].
By default, the observation is normalized by SB3 pre-processing (dividing by 255 to have values in [0, 1]) when using CNN policies.
Images can be either channel-first or channel-last.

If you want to use CnnPolicy or MultiInputPolicy with image-like observation (3D tensor) that are already normalized, you must pass normalize_images=False
to the policy (using policy_kwargs parameter, policy_kwargs=dict(normalize_images=False))
and make sure your image is in the channel-first format.




Note

Although SB3 supports both channel-last and channel-first images as input, we recommend using the channel-first convention when possible.
Under the hood, when a channel-last image is passed, SB3 uses a VecTransposeImage wrapper to re-order the channels.



import gymnasium as gym
import numpy as np
from gymnasium import spaces


class CustomEnv(gym.Env):
    """Custom Environment that follows gym interface."""

    metadata = {"render_modes": ["human"], "render_fps": 30}

    def __init__(self, arg1, arg2, ...):
        super().__init__()
        # Define action and observation space
        # They must be gym.spaces objects
        # Example when using discrete actions:
        self.action_space = spaces.Discrete(N_DISCRETE_ACTIONS)
        # Example for using image as input (channel-first; channel-last also works):
        self.observation_space = spaces.Box(low=0, high=255,
                                            shape=(N_CHANNELS, HEIGHT, WIDTH), dtype=np.uint8)

    def step(self, action):
        ...
        return observation, reward, terminated, truncated, info

    def reset(self, seed=None, options=None):
        ...
        return observation, info

    def render(self):
        ...

    def close(self):
        ...





Then you can define and train a RL agent with:

# Instantiate the env
env = CustomEnv(arg1, ...)
# Define and Train the agent
model = A2C("CnnPolicy", env).learn(total_timesteps=1000)





To check that your environment follows the Gym interface that SB3 supports, please use:

from stable_baselines3.common.env_checker import check_env

env = CustomEnv(arg1, ...)
# It will check your custom environment and output additional warnings if needed
check_env(env)





Gymnasium also have its own env checker [https://gymnasium.farama.org/api/utils/#gymnasium.utils.env_checker.check_env] but it checks a superset of what SB3 supports (SB3 does not support all Gym features).

We have created a colab notebook [https://colab.research.google.com/github/araffin/rl-tutorial-jnrr19/blob/sb3/5_custom_gym_env.ipynb] for a concrete example on creating a custom environment along with an example of using it with Stable-Baselines3 interface.

Alternatively, you may look at Gymnasium built-in environments [https://gymnasium.farama.org].

Optionally, you can also register the environment with gym, that will allow you to create the RL agent in one line (and use gym.make() to instantiate the env):

from gymnasium.envs.registration import register
# Example for the CartPole environment
register(
    # unique identifier for the env `name-version`
    id="CartPole-v1",
    # path to the class for creating the env
    # Note: entry_point also accept a class as input (and not only a string)
    entry_point="gym.envs.classic_control:CartPoleEnv",
    # Max number of steps per episode, using a `TimeLimitWrapper`
    max_episode_steps=500,
)





In the project, for testing purposes, we use a custom environment named IdentityEnv
defined in this file [https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/envs/identity_env.py].
An example of how to use it can be found here [https://github.com/DLR-RM/stable-baselines3/blob/master/tests/test_identity.py].




            

          

      

      

    

  

    
      
          
            
  
Callbacks

A callback is a set of functions that will be called at given stages of the training procedure.
You can use callbacks to access internal state of the RL model during training.
It allows one to do monitoring, auto saving, model manipulation, progress bars, …


Custom Callback

To build a custom callback, you need to create a class that derives from BaseCallback.
This will give you access to events (_on_training_start, _on_step) and useful variables (like self.model for the RL model).

You can find two examples of custom callbacks in the documentation: one for saving the best model according to the training reward (see Examples), and one for logging additional values with Tensorboard (see Tensorboard section).

from stable_baselines3.common.callbacks import BaseCallback


class CustomCallback(BaseCallback):
    """
    A custom callback that derives from ``BaseCallback``.

    :param verbose: Verbosity level: 0 for no output, 1 for info messages, 2 for debug messages
    """
    def __init__(self, verbose=0):
        super(CustomCallback, self).__init__(verbose)
        # Those variables will be accessible in the callback
        # (they are defined in the base class)
        # The RL model
        # self.model = None  # type: BaseAlgorithm
        # An alias for self.model.get_env(), the environment used for training
        # self.training_env = None  # type: Union[gym.Env, VecEnv, None]
        # Number of time the callback was called
        # self.n_calls = 0  # type: int
        # self.num_timesteps = 0  # type: int
        # local and global variables
        # self.locals = None  # type: Dict[str, Any]
        # self.globals = None  # type: Dict[str, Any]
        # The logger object, used to report things in the terminal
        # self.logger = None  # stable_baselines3.common.logger
        # # Sometimes, for event callback, it is useful
        # # to have access to the parent object
        # self.parent = None  # type: Optional[BaseCallback]

    def _on_training_start(self) -> None:
        """
        This method is called before the first rollout starts.
        """
        pass

    def _on_rollout_start(self) -> None:
        """
        A rollout is the collection of environment interaction
        using the current policy.
        This event is triggered before collecting new samples.
        """
        pass

    def _on_step(self) -> bool:
        """
        This method will be called by the model after each call to `env.step()`.

        For child callback (of an `EventCallback`), this will be called
        when the event is triggered.

        :return: (bool) If the callback returns False, training is aborted early.
        """
        return True

    def _on_rollout_end(self) -> None:
        """
        This event is triggered before updating the policy.
        """
        pass

    def _on_training_end(self) -> None:
        """
        This event is triggered before exiting the `learn()` method.
        """
        pass






Note

self.num_timesteps corresponds to the total number of steps taken in the environment, i.e., it is the number of environments multiplied by the number of time env.step() was called

For the other algorithms, self.num_timesteps is incremented by n_envs (number of environments) after each call to env.step()




Note

For off-policy algorithms like SAC, DDPG, TD3 or DQN, the notion of rollout corresponds to the steps taken in the environment between two updates.





Event Callback

Compared to Keras, Stable Baselines provides a second type of BaseCallback, named EventCallback that is meant to trigger events. When an event is triggered, then a child callback is called.

As an example, EvalCallback is an EventCallback that will trigger its child callback when there is a new best model.
A child callback is for instance StopTrainingOnRewardThreshold that stops the training if the mean reward achieved by the RL model is above a threshold.


Note

We recommend to take a look at the source code of EvalCallback and StopTrainingOnRewardThreshold to have a better overview of what can be achieved with this kind of callbacks.



class EventCallback(BaseCallback):
    """
    Base class for triggering callback on event.

    :param callback: (Optional[BaseCallback]) Callback that will be called
        when an event is triggered.
    :param verbose: Verbosity level: 0 for no output, 1 for info messages, 2 for debug messages
    """
    def __init__(self, callback: Optional[BaseCallback] = None, verbose: int = 0):
        super(EventCallback, self).__init__(verbose=verbose)
        self.callback = callback
        # Give access to the parent
        if callback is not None:
            self.callback.parent = self
    ...

    def _on_event(self) -> bool:
        if self.callback is not None:
            return self.callback()
        return True







Callback Collection

Stable Baselines provides you with a set of common callbacks for:


	saving the model periodically (CheckpointCallback)


	evaluating the model periodically and saving the best one (EvalCallback)


	chaining callbacks (CallbackList)


	triggering callback on events (Event Callback, EveryNTimesteps)


	stopping the training early based on a reward threshold (StopTrainingOnRewardThreshold)





CheckpointCallback

Callback for saving a model every save_freq calls to env.step(), you must specify a log folder (save_path)
and optionally a prefix for the checkpoints (rl_model by default).
If you are using this callback to stop and resume training, you may want to optionally save the replay buffer if the
model has one (save_replay_buffer, False by default).
Additionally, if your environment uses a VecNormalize wrapper, you can save the
corresponding statistics using save_vecnormalize (False by default).


Warning

When using multiple environments, each call to  env.step() will effectively correspond to n_envs steps.
If you want the save_freq to be similar when using different number of environments,
you need to account for it using save_freq = max(save_freq // n_envs, 1).
The same goes for the other callbacks.



from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import CheckpointCallback

# Save a checkpoint every 1000 steps
checkpoint_callback = CheckpointCallback(
  save_freq=1000,
  save_path="./logs/",
  name_prefix="rl_model",
  save_replay_buffer=True,
  save_vecnormalize=True,
)

model = SAC("MlpPolicy", "Pendulum-v1")
model.learn(2000, callback=checkpoint_callback)







EvalCallback

Evaluate periodically the performance of an agent, using a separate test environment.
It will save the best model if best_model_save_path folder is specified and save the evaluations results in a numpy archive (evaluations.npz) if log_path folder is specified.


Note

You can pass child callbacks via callback_after_eval and callback_on_new_best arguments. callback_after_eval will be triggered after every evaluation, and callback_on_new_best will be triggered each time there is a new best model.




Warning

You need to make sure that eval_env is wrapped the same way as the training environment, for instance using the VecTransposeImage wrapper if you have a channel-last image as input.
The EvalCallback class outputs a warning if it is not the case.



import gymnasium as gym

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import EvalCallback

# Separate evaluation env
eval_env = gym.make("Pendulum-v1")
# Use deterministic actions for evaluation
eval_callback = EvalCallback(eval_env, best_model_save_path="./logs/",
                             log_path="./logs/", eval_freq=500,
                             deterministic=True, render=False)

model = SAC("MlpPolicy", "Pendulum-v1")
model.learn(5000, callback=eval_callback)







ProgressBarCallback

Display a progress bar with the current progress, elapsed time and estimated remaining time.
This callback is integrated inside SB3 via the progress_bar argument of the learn() method.


Note

This callback requires tqdm and rich packages to be installed. This is done automatically when using pip install stable-baselines3[extra]



from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import ProgressBarCallback

model = PPO("MlpPolicy", "Pendulum-v1")
# Display progress bar using the progress bar callback
# this is equivalent to model.learn(100_000, callback=ProgressBarCallback())
model.learn(100_000, progress_bar=True)







CallbackList

Class for chaining callbacks, they will be called sequentially.
Alternatively, you can pass directly a list of callbacks to the learn() method, it will be converted automatically to a CallbackList.

import gymnasium as gym

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import CallbackList, CheckpointCallback, EvalCallback

checkpoint_callback = CheckpointCallback(save_freq=1000, save_path="./logs/")
# Separate evaluation env
eval_env = gym.make("Pendulum-v1")
eval_callback = EvalCallback(eval_env, best_model_save_path="./logs/best_model",
                             log_path="./logs/results", eval_freq=500)
# Create the callback list
callback = CallbackList([checkpoint_callback, eval_callback])

model = SAC("MlpPolicy", "Pendulum-v1")
# Equivalent to:
# model.learn(5000, callback=[checkpoint_callback, eval_callback])
model.learn(5000, callback=callback)







StopTrainingOnRewardThreshold

Stop the training once a threshold in episodic reward (mean episode reward over the evaluations) has been reached (i.e., when the model is good enough).
It must be used with the EvalCallback and use the event triggered by a new best model.

import gymnasium as gym

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import EvalCallback, StopTrainingOnRewardThreshold

# Separate evaluation env
eval_env = gym.make("Pendulum-v1")
# Stop training when the model reaches the reward threshold
callback_on_best = StopTrainingOnRewardThreshold(reward_threshold=-200, verbose=1)
eval_callback = EvalCallback(eval_env, callback_on_new_best=callback_on_best, verbose=1)

model = SAC("MlpPolicy", "Pendulum-v1", verbose=1)
# Almost infinite number of timesteps, but the training will stop
# early as soon as the reward threshold is reached
model.learn(int(1e10), callback=eval_callback)







EveryNTimesteps

An Event Callback that will trigger its child callback every n_steps timesteps.


Note

Because of the way PPO1 and TRPO work (they rely on MPI), n_steps is a lower bound between two events.



import gymnasium as gym

from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import CheckpointCallback, EveryNTimesteps

# this is equivalent to defining CheckpointCallback(save_freq=500)
# checkpoint_callback will be triggered every 500 steps
checkpoint_on_event = CheckpointCallback(save_freq=1, save_path="./logs/")
event_callback = EveryNTimesteps(n_steps=500, callback=checkpoint_on_event)

model = PPO("MlpPolicy", "Pendulum-v1", verbose=1)

model.learn(int(2e4), callback=event_callback)







StopTrainingOnMaxEpisodes

Stop the training upon reaching the maximum number of episodes, regardless of the model’s total_timesteps value.
Also, presumes that, for multiple environments, the desired behavior is that the agent trains on each env for max_episodes
and in total for max_episodes * n_envs episodes.


Note

For multiple environments, the agent will train for a total of max_episodes * n_envs episodes.
However, it can’t be guaranteed that this training will occur for an exact number of max_episodes per environment.
Thus, there is an assumption that, on average, each environment ran for max_episodes.



from stable_baselines3 import A2C
from stable_baselines3.common.callbacks import StopTrainingOnMaxEpisodes

# Stops training when the model reaches the maximum number of episodes
callback_max_episodes = StopTrainingOnMaxEpisodes(max_episodes=5, verbose=1)

model = A2C("MlpPolicy", "Pendulum-v1", verbose=1)
# Almost infinite number of timesteps, but the training will stop
# early as soon as the max number of episodes is reached
model.learn(int(1e10), callback=callback_max_episodes)







StopTrainingOnNoModelImprovement

Stop the training if there is no new best model (no new best mean reward) after more than a specific number of consecutive evaluations.
The idea is to save time in experiments when you know that the learning curves are somehow well behaved and, therefore,
after many evaluations without improvement the learning has probably stabilized.
It must be used with the EvalCallback and use the event triggered after every evaluation.

import gymnasium as gym

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import EvalCallback, StopTrainingOnNoModelImprovement

# Separate evaluation env
eval_env = gym.make("Pendulum-v1")
# Stop training if there is no improvement after more than 3 evaluations
stop_train_callback = StopTrainingOnNoModelImprovement(max_no_improvement_evals=3, min_evals=5, verbose=1)
eval_callback = EvalCallback(eval_env, eval_freq=1000, callback_after_eval=stop_train_callback, verbose=1)

model = SAC("MlpPolicy", "Pendulum-v1", learning_rate=1e-3, verbose=1)
# Almost infinite number of timesteps, but the training will stop early
# as soon as the the number of consecutive evaluations without model
# improvement is greater than 3
model.learn(int(1e10), callback=eval_callback)






	
class stable_baselines3.common.callbacks.BaseCallback(verbose=0)

	Base class for callback.


	Parameters:

	verbose (int) – Verbosity level: 0 for no output, 1 for info messages, 2 for debug messages






	
init_callback(model)

	Initialize the callback by saving references to the
RL model and the training environment for convenience.


	Return type:

	None










	
on_step()

	This method will be called by the model after each call to env.step().

For child callback (of an EventCallback), this will be called
when the event is triggered.


	Return type:

	bool



	Returns:

	If the callback returns False, training is aborted early.










	
update_child_locals(locals_)

	Update the references to the local variables on sub callbacks.


	Parameters:

	locals – the local variables during rollout collection



	Return type:

	None










	
update_locals(locals_)

	Update the references to the local variables.


	Parameters:

	locals – the local variables during rollout collection



	Return type:

	None














	
class stable_baselines3.common.callbacks.CallbackList(callbacks)

	Class for chaining callbacks.


	Parameters:

	callbacks (List[BaseCallback]) – A list of callbacks that will be called
sequentially.






	
update_child_locals(locals_)

	Update the references to the local variables.


	Parameters:

	locals – the local variables during rollout collection



	Return type:

	None














	
class stable_baselines3.common.callbacks.CheckpointCallback(save_freq, save_path, name_prefix='rl_model', save_replay_buffer=False, save_vecnormalize=False, verbose=0)

	Callback for saving a model every save_freq calls
to env.step().
By default, it only saves model checkpoints,
you need to pass save_replay_buffer=True,
and save_vecnormalize=True to also save replay buffer checkpoints
and normalization statistics checkpoints.


Warning

When using multiple environments, each call to  env.step()
will effectively correspond to n_envs steps.
To account for that, you can use save_freq = max(save_freq // n_envs, 1)




	Parameters:

	
	save_freq (int) – Save checkpoints every save_freq call of the callback.


	save_path (str) – Path to the folder where the model will be saved.


	name_prefix (str) – Common prefix to the saved models


	save_replay_buffer (bool) – Save the model replay buffer


	save_vecnormalize (bool) – Save the VecNormalize statistics


	verbose (int) – Verbosity level: 0 for no output, 2 for indicating when saving model checkpoint













	
class stable_baselines3.common.callbacks.ConvertCallback(callback, verbose=0)

	Convert functional callback (old-style) to object.


	Parameters:

	
	callback (Optional[Callable[[Dict[str, Any], Dict[str, Any]], bool]]) – 


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages, 2 for debug messages













	
class stable_baselines3.common.callbacks.EvalCallback(eval_env, callback_on_new_best=None, callback_after_eval=None, n_eval_episodes=5, eval_freq=10000, log_path=None, best_model_save_path=None, deterministic=True, render=False, verbose=1, warn=True)

	Callback for evaluating an agent.


Warning

When using multiple environments, each call to  env.step()
will effectively correspond to n_envs steps.
To account for that, you can use eval_freq = max(eval_freq // n_envs, 1)




	Parameters:

	
	eval_env (Union[Env, VecEnv]) – The environment used for initialization


	callback_on_new_best (Optional[BaseCallback]) – Callback to trigger
when there is a new best model according to the mean_reward


	callback_after_eval (Optional[BaseCallback]) – Callback to trigger after every evaluation


	n_eval_episodes (int) – The number of episodes to test the agent


	eval_freq (int) – Evaluate the agent every eval_freq call of the callback.


	log_path (Optional[str]) – Path to a folder where the evaluations (evaluations.npz)
will be saved. It will be updated at each evaluation.


	best_model_save_path (Optional[str]) – Path to a folder where the best model
according to performance on the eval env will be saved.


	deterministic (bool) – Whether the evaluation should
use a stochastic or deterministic actions.


	render (bool) – Whether to render or not the environment during evaluation


	verbose (int) – Verbosity level: 0 for no output, 1 for indicating information about evaluation results


	warn (bool) – Passed to evaluate_policy (warns if eval_env has not been
wrapped with a Monitor wrapper)









	
update_child_locals(locals_)

	Update the references to the local variables.


	Parameters:

	locals – the local variables during rollout collection



	Return type:

	None














	
class stable_baselines3.common.callbacks.EventCallback(callback=None, verbose=0)

	Base class for triggering callback on event.


	Parameters:

	
	callback (Optional[BaseCallback]) – Callback that will be called
when an event is triggered.


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages, 2 for debug messages









	
init_callback(model)

	Initialize the callback by saving references to the
RL model and the training environment for convenience.


	Return type:

	None










	
update_child_locals(locals_)

	Update the references to the local variables.


	Parameters:

	locals – the local variables during rollout collection



	Return type:

	None














	
class stable_baselines3.common.callbacks.EveryNTimesteps(n_steps, callback)

	Trigger a callback every n_steps timesteps


	Parameters:

	
	n_steps (int) – Number of timesteps between two trigger.


	callback (BaseCallback) – Callback that will be called
when the event is triggered.













	
class stable_baselines3.common.callbacks.ProgressBarCallback

	Display a progress bar when training SB3 agent
using tqdm and rich packages.






	
class stable_baselines3.common.callbacks.StopTrainingOnMaxEpisodes(max_episodes, verbose=0)

	Stop the training once a maximum number of episodes are played.

For multiple environments presumes that, the desired behavior is that the agent trains on each env for max_episodes
and in total for max_episodes * n_envs episodes.


	Parameters:

	
	max_episodes (int) – Maximum number of episodes to stop training.


	verbose (int) – Verbosity level: 0 for no output, 1 for indicating information about when training ended by
reaching max_episodes













	
class stable_baselines3.common.callbacks.StopTrainingOnNoModelImprovement(max_no_improvement_evals, min_evals=0, verbose=0)

	Stop the training early if there is no new best model (new best mean reward) after more than N consecutive evaluations.

It is possible to define a minimum number of evaluations before start to count evaluations without improvement.

It must be used with the EvalCallback.


	Parameters:

	
	max_no_improvement_evals (int) – Maximum number of consecutive evaluations without a new best model.


	min_evals (int) – Number of evaluations before start to count evaluations without improvements.


	verbose (int) – Verbosity level: 0 for no output, 1 for indicating when training ended because no new best model













	
class stable_baselines3.common.callbacks.StopTrainingOnRewardThreshold(reward_threshold, verbose=0)

	Stop the training once a threshold in episodic reward
has been reached (i.e. when the model is good enough).

It must be used with the EvalCallback.


	Parameters:

	
	reward_threshold (float) – Minimum expected reward per episode
to stop training.


	verbose (int) – Verbosity level: 0 for no output, 1 for indicating when training ended because episodic reward
threshold reached

















            

          

      

      

    

  

    
      
          
            
  
Tensorboard Integration


Basic Usage

To use Tensorboard with stable baselines3, you simply need to pass the location of the log folder to the RL agent:

from stable_baselines3 import A2C

model = A2C("MlpPolicy", "CartPole-v1", verbose=1, tensorboard_log="./a2c_cartpole_tensorboard/")
model.learn(total_timesteps=10_000)





You can also define custom logging name when training (by default it is the algorithm name)

from stable_baselines3 import A2C

model = A2C("MlpPolicy", "CartPole-v1", verbose=1, tensorboard_log="./a2c_cartpole_tensorboard/")
model.learn(total_timesteps=10_000, tb_log_name="first_run")
# Pass reset_num_timesteps=False to continue the training curve in tensorboard
# By default, it will create a new curve
# Keep tb_log_name constant to have continuous curve (see note below)
model.learn(total_timesteps=10_000, tb_log_name="second_run", reset_num_timesteps=False)
model.learn(total_timesteps=10_000, tb_log_name="third_run", reset_num_timesteps=False)






Note

If you specify different tb_log_name in subsequent runs, you will have split graphs, like in the figure below.
If you want them to be continuous, you must keep the same tb_log_name (see issue #975 [https://github.com/DLR-RM/stable-baselines3/issues/975#issuecomment-1198992211]).
And, if you still managed to get your graphs split by other means, just put tensorboard log files into the same folder.

[image: split_graph]


Once the learn function is called, you can monitor the RL agent during or after the training, with the following bash command:

tensorboard --logdir ./a2c_cartpole_tensorboard/






Note

You can find explanations about the logger output and names in the Logger section.



you can also add past logging folders:

tensorboard --logdir ./a2c_cartpole_tensorboard/;./ppo2_cartpole_tensorboard/





It will display information such as the episode reward (when using a Monitor wrapper), the model losses and other parameter unique to some models.

[image: plotting]


Logging More Values

Using a callback, you can easily log more values with TensorBoard.
Here is a simple example on how to log both additional tensor or arbitrary scalar value:

import numpy as np

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import BaseCallback

model = SAC("MlpPolicy", "Pendulum-v1", tensorboard_log="/tmp/sac/", verbose=1)


class TensorboardCallback(BaseCallback):
    """
    Custom callback for plotting additional values in tensorboard.
    """

    def __init__(self, verbose=0):
        super().__init__(verbose)

    def _on_step(self) -> bool:
        # Log scalar value (here a random variable)
        value = np.random.random()
        self.logger.record("random_value", value)
        return True


model.learn(50000, callback=TensorboardCallback())






Note

If you want to log values more often than the default to tensorboard, you manually call self.logger.dump(self.num_timesteps) in a callback
(see issue #506 [https://github.com/DLR-RM/stable-baselines3/issues/506]).





Logging Images

TensorBoard supports periodic logging of image data, which helps evaluating agents at various stages during training.


Warning

To support image logging pillow [https://github.com/python-pillow/Pillow] must be installed otherwise, TensorBoard ignores the image and logs a warning.



Here is an example of how to render an image to TensorBoard at regular intervals:

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import Image

model = SAC("MlpPolicy", "Pendulum-v1", tensorboard_log="/tmp/sac/", verbose=1)


class ImageRecorderCallback(BaseCallback):
    def __init__(self, verbose=0):
        super().__init__(verbose)

    def _on_step(self):
        image = self.training_env.render(mode="rgb_array")
        # "HWC" specify the dataformat of the image, here channel last
        # (H for height, W for width, C for channel)
        # See https://pytorch.org/docs/stable/tensorboard.html
        # for supported formats
        self.logger.record("trajectory/image", Image(image, "HWC"), exclude=("stdout", "log", "json", "csv"))
        return True


model.learn(50000, callback=ImageRecorderCallback())







Logging Figures/Plots

TensorBoard supports periodic logging of figures/plots created with matplotlib, which helps evaluating agents at various stages during training.


Warning

To support figure logging matplotlib [https://matplotlib.org/] must be installed otherwise, TensorBoard ignores the figure and logs a warning.



Here is an example of how to store a plot in TensorBoard at regular intervals:

import numpy as np
import matplotlib.pyplot as plt

from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import Figure

model = SAC("MlpPolicy", "Pendulum-v1", tensorboard_log="/tmp/sac/", verbose=1)


class FigureRecorderCallback(BaseCallback):
    def __init__(self, verbose=0):
        super().__init__(verbose)

    def _on_step(self):
        # Plot values (here a random variable)
        figure = plt.figure()
        figure.add_subplot().plot(np.random.random(3))
        # Close the figure after logging it
        self.logger.record("trajectory/figure", Figure(figure, close=True), exclude=("stdout", "log", "json", "csv"))
        plt.close()
        return True


model.learn(50000, callback=FigureRecorderCallback())







Logging Videos

TensorBoard supports periodic logging of video data, which helps evaluating agents at various stages during training.


Warning

To support video logging moviepy [https://zulko.github.io/moviepy/] must be installed otherwise, TensorBoard ignores the video and logs a warning.



Here is an example of how to render an episode and log the resulting video to TensorBoard at regular intervals:

from typing import Any, Dict

import gymnasium as gym
import torch as th

from stable_baselines3 import A2C
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.logger import Video


class VideoRecorderCallback(BaseCallback):
    def __init__(self, eval_env: gym.Env, render_freq: int, n_eval_episodes: int = 1, deterministic: bool = True):
        """
        Records a video of an agent's trajectory traversing ``eval_env`` and logs it to TensorBoard

        :param eval_env: A gym environment from which the trajectory is recorded
        :param render_freq: Render the agent's trajectory every eval_freq call of the callback.
        :param n_eval_episodes: Number of episodes to render
        :param deterministic: Whether to use deterministic or stochastic policy
        """
        super().__init__()
        self._eval_env = eval_env
        self._render_freq = render_freq
        self._n_eval_episodes = n_eval_episodes
        self._deterministic = deterministic

    def _on_step(self) -> bool:
        if self.n_calls % self._render_freq == 0:
            screens = []

            def grab_screens(_locals: Dict[str, Any], _globals: Dict[str, Any]) -> None:
                """
                Renders the environment in its current state, recording the screen in the captured `screens` list

                :param _locals: A dictionary containing all local variables of the callback's scope
                :param _globals: A dictionary containing all global variables of the callback's scope
                """
                screen = self._eval_env.render(mode="rgb_array")
                # PyTorch uses CxHxW vs HxWxC gym (and tensorflow) image convention
                screens.append(screen.transpose(2, 0, 1))

            evaluate_policy(
                self.model,
                self._eval_env,
                callback=grab_screens,
                n_eval_episodes=self._n_eval_episodes,
                deterministic=self._deterministic,
            )
            self.logger.record(
                "trajectory/video",
                Video(th.ByteTensor([screens]), fps=40),
                exclude=("stdout", "log", "json", "csv"),
            )
        return True


model = A2C("MlpPolicy", "CartPole-v1", tensorboard_log="runs/", verbose=1)
video_recorder = VideoRecorderCallback(gym.make("CartPole-v1"), render_freq=5000)
model.learn(total_timesteps=int(5e4), callback=video_recorder)







Logging Hyperparameters

TensorBoard supports logging of hyperparameters in its HPARAMS tab, which helps comparing agents trainings.


Warning

To display hyperparameters in the HPARAMS section, a metric_dict must be given (as well as a hparam_dict).



Here is an example of how to save hyperparameters in TensorBoard:

from stable_baselines3 import A2C
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import HParam


class HParamCallback(BaseCallback):
    """
    Saves the hyperparameters and metrics at the start of the training, and logs them to TensorBoard.
    """

    def _on_training_start(self) -> None:
        hparam_dict = {
            "algorithm": self.model.__class__.__name__,
            "learning rate": self.model.learning_rate,
            "gamma": self.model.gamma,
        }
        # define the metrics that will appear in the `HPARAMS` Tensorboard tab by referencing their tag
        # Tensorbaord will find & display metrics from the `SCALARS` tab
        metric_dict = {
            "rollout/ep_len_mean": 0,
            "train/value_loss": 0.0,
        }
        self.logger.record(
            "hparams",
            HParam(hparam_dict, metric_dict),
            exclude=("stdout", "log", "json", "csv"),
        )

    def _on_step(self) -> bool:
        return True


model = A2C("MlpPolicy", "CartPole-v1", tensorboard_log="runs/", verbose=1)
model.learn(total_timesteps=int(5e4), callback=HParamCallback())







Directly Accessing The Summary Writer

If you would like to log arbitrary data (in one of the formats supported by pytorch [https://pytorch.org/docs/stable/tensorboard.html]), you
can get direct access to the underlying SummaryWriter in a callback:


Warning

This is method is not recommended and should only be used by advanced users.




Note

If you want a concrete example, you can watch how to log lap time with donkeycar env [https://www.youtube.com/watch?v=v8j2bpcE4Rg&t=4619s],
or read the code in the RL Zoo [https://github.com/DLR-RM/rl-baselines3-zoo/blob/feat/gym-donkeycar/rl_zoo3/callbacks.py#L251-L270].
You might also want to take a look at issue #1160 [https://github.com/DLR-RM/stable-baselines3/issues/1160] and issue #1219 [https://github.com/DLR-RM/stable-baselines3/issues/1219].



from stable_baselines3 import SAC
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import TensorBoardOutputFormat



model = SAC("MlpPolicy", "Pendulum-v1", tensorboard_log="/tmp/sac/", verbose=1)


class SummaryWriterCallback(BaseCallback):

    def _on_training_start(self):
        self._log_freq = 1000  # log every 1000 calls

        output_formats = self.logger.output_formats
        # Save reference to tensorboard formatter object
        # note: the failure case (not formatter found) is not handled here, should be done with try/except.
        self.tb_formatter = next(formatter for formatter in output_formats if isinstance(formatter, TensorBoardOutputFormat))

    def _on_step(self) -> bool:
        if self.n_calls % self._log_freq == 0:
            # You can have access to info from the env using self.locals.
            # for instance, when using one env (index 0 of locals["infos"]):
            # lap_count = self.locals["infos"][0]["lap_count"]
            # self.tb_formatter.writer.add_scalar("train/lap_count", lap_count, self.num_timesteps)

            self.tb_formatter.writer.add_text("direct_access", "this is a value", self.num_timesteps)
            self.tb_formatter.writer.flush()


model.learn(50000, callback=SummaryWriterCallback())









            

          

      

      

    

  

    
      
          
            
  
Integrations


Weights & Biases

Weights & Biases provides a callback for experiment tracking that allows to visualize and share results.

The full documentation is available here: https://docs.wandb.ai/guides/integrations/other/stable-baselines-3

import gymnasium as gym
import wandb
from wandb.integration.sb3 import WandbCallback

from stable_baselines3 import PPO

config = {
    "policy_type": "MlpPolicy",
    "total_timesteps": 25000,
    "env_id": "CartPole-v1",
}
run = wandb.init(
    project="sb3",
    config=config,
    sync_tensorboard=True,  # auto-upload sb3's tensorboard metrics
    # monitor_gym=True,  # auto-upload the videos of agents playing the game
    # save_code=True,  # optional
)

model = PPO(config["policy_type"], config["env_id"], verbose=1, tensorboard_log=f"runs/{run.id}")
model.learn(
    total_timesteps=config["total_timesteps"],
    callback=WandbCallback(
        model_save_path=f"models/{run.id}",
        verbose=2,
    ),
)
run.finish()







Hugging Face 🤗

The Hugging Face Hub 🤗 is a central place where anyone can share and explore models. It allows you to host your saved models 💾.

You can see the list of stable-baselines3 saved models here: https://huggingface.co/models?library=stable-baselines3
Most of them are available via the RL Zoo.

Official pre-trained models are saved in the SB3 organization on the hub: https://huggingface.co/sb3

We wrote a tutorial on how to use 🤗 Hub and Stable-Baselines3
here [https://colab.research.google.com/github/huggingface/huggingface_sb3/blob/main/notebooks/sb3_huggingface.ipynb].


Installation

pip install huggingface_sb3






Note

If you use the RL Zoo [https://github.com/DLR-RM/rl-baselines3-zoo], pushing/loading models from the hub are already integrated:

# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo a2c --env LunarLander-v2 -orga sb3 -f logs/
# Test the agent
python -m rl_zoo3.enjoy --algo a2c --env LunarLander-v2  -f logs/
# Push model, config and hyperparameters to the hub
python -m rl_zoo3.push_to_hub --algo a2c --env LunarLander-v2 -f logs/ -orga sb3 -m "Initial commit"









Download a model from the Hub

You need to copy the repo-id that contains your saved model.
For instance sb3/demo-hf-CartPole-v1:

import gymnasium as gym

from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy

# Retrieve the model from the hub
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(
    repo_id="sb3/demo-hf-CartPole-v1",
    filename="ppo-CartPole-v1.zip",
)
model = PPO.load(checkpoint)

# Evaluate the agent and watch it
eval_env = gym.make("CartPole-v1")
mean_reward, std_reward = evaluate_policy(
    model, eval_env, render=True, n_eval_episodes=5, deterministic=True, warn=False
)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")





You need to define two parameters:


	repo-id: the name of the Hugging Face repo you want to download.


	filename: the file you want to download.






Upload a model to the Hub

You can easily upload your models using two different functions:


	package_to_hub(): save the model, evaluate it, generate a model card and record a replay video of your agent before pushing the complete repo to the Hub.


	push_to_hub(): simply push a file to the Hub.




First, you need to be logged in to Hugging Face to upload a model:


	If you’re using Colab/Jupyter Notebooks:




from huggingface_hub import notebook_login
notebook_login()






	Otherwise:




huggingface-cli login





Then, in this example, we train a PPO agent to play CartPole-v1 and push it to a new repo sb3/demo-hf-CartPole-v1


With package_to_hub()

from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env

from huggingface_sb3 import package_to_hub

# Create the environment
env_id = "CartPole-v1"
env = make_vec_env(env_id, n_envs=1)

# Create the evaluation environment
eval_env = make_vec_env(env_id, n_envs=1)

# Instantiate the agent
model = PPO("MlpPolicy", env, verbose=1)

# Train the agent
model.learn(total_timesteps=int(5000))

# This method save, evaluate, generate a model card and record a replay video of your agent before pushing the repo to the hub
package_to_hub(model=model,
             model_name="ppo-CartPole-v1",
             model_architecture="PPO",
             env_id=env_id,
             eval_env=eval_env,
             repo_id="sb3/demo-hf-CartPole-v1",
             commit_message="Test commit")





You need to define seven parameters:


	model: your trained model.


	model_architecture: name of the architecture of your model (DQN, PPO, A2C, SAC…).


	env_id: name of the environment.


	eval_env: environment used to evaluate the agent.


	repo-id: the name of the Hugging Face repo you want to create or update. It’s <your huggingface username>/<the repo name>.


	commit-message.


	filename: the file you want to push to the Hub.






With push_to_hub()

from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env

from huggingface_sb3 import push_to_hub

# Create the environment
env_id = "CartPole-v1"
env = make_vec_env(env_id, n_envs=1)

# Instantiate the agent
model = PPO("MlpPolicy", env, verbose=1)

# Train the agent
model.learn(total_timesteps=int(5000))

# Save the model
model.save("ppo-CartPole-v1")

# Push this saved model .zip file to the hf repo
# If this repo does not exists it will be created
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename: the name of the file == "name" inside model.save("ppo-CartPole-v1")
push_to_hub(
  repo_id="sb3/demo-hf-CartPole-v1",
  filename="ppo-CartPole-v1.zip",
  commit_message="Added CartPole-v1 model trained with PPO",
)





You need to define three parameters:


	repo-id: the name of the Hugging Face repo you want to create or update. It’s <your huggingface username>/<the repo name>.


	filename: the file you want to push to the Hub.


	commit-message.








MLFLow

If you want to use MLFLow [https://github.com/mlflow/mlflow] to track your SB3 experiments,
you can adapt the following code which defines a custom logger output:

import sys
from typing import Any, Dict, Tuple, Union

import mlflow
import numpy as np

from stable_baselines3 import SAC
from stable_baselines3.common.logger import HumanOutputFormat, KVWriter, Logger


class MLflowOutputFormat(KVWriter):
    """
    Dumps key/value pairs into MLflow's numeric format.
    """

    def write(
        self,
        key_values: Dict[str, Any],
        key_excluded: Dict[str, Union[str, Tuple[str, ...]]],
        step: int = 0,
    ) -> None:

        for (key, value), (_, excluded) in zip(
            sorted(key_values.items()), sorted(key_excluded.items())
        ):

            if excluded is not None and "mlflow" in excluded:
                continue

            if isinstance(value, np.ScalarType):
                if not isinstance(value, str):
                    mlflow.log_metric(key, value, step)


loggers = Logger(
    folder=None,
    output_formats=[HumanOutputFormat(sys.stdout), MLflowOutputFormat()],
)

with mlflow.start_run():
    model = SAC("MlpPolicy", "Pendulum-v1", verbose=2)
    # Set custom logger
    model.set_logger(loggers)
    model.learn(total_timesteps=10000, log_interval=1)









            

          

      

      

    

  

    
      
          
            
  
RL Baselines3 Zoo

RL Baselines3 Zoo [https://github.com/DLR-RM/rl-baselines3-zoo] is a training framework for Reinforcement Learning (RL).

It provides scripts for training, evaluating agents, tuning hyperparameters, plotting results and recording videos.

In addition, it includes a collection of tuned hyperparameters for common environments and RL algorithms, and agents trained with those settings.

Goals of this repository:


	Provide a simple interface to train and enjoy RL agents


	Benchmark the different Reinforcement Learning algorithms


	Provide tuned hyperparameters for each environment and RL algorithm


	Have fun with the trained agents!




Documentation is available online: https://rl-baselines3-zoo.readthedocs.io/


Installation

Option 1: install the python package pip install rl_zoo3

or:


	Clone the repository:




git clone --recursive https://github.com/DLR-RM/rl-baselines3-zoo
cd rl-baselines3-zoo/






Note

You can remove the --recursive option if you don’t want to download the trained agents




Note

If you only need the training/plotting scripts and additional callbacks/wrappers from the RL Zoo, you can also install it via pip: pip install rl_zoo3



2. Install dependencies

apt-get install swig cmake ffmpeg
# full dependencies
pip install -r requirements.txt
# minimal dependencies
pip install -e .







Train an Agent

The hyperparameters for each environment are defined in
hyperparameters/algo_name.yml.

If the environment exists in this file, then you can train an agent
using:

python -m rl_zoo3.train --algo algo_name --env env_id





For example (with evaluation and checkpoints):

python -m rl_zoo3.train --algo ppo --env CartPole-v1 --eval-freq 10000 --save-freq 50000





Continue training (here, load pretrained agent for Breakout and continue
training for 5000 steps):

python -m rl_zoo3.train --algo a2c --env BreakoutNoFrameskip-v4 -i trained_agents/a2c/BreakoutNoFrameskip-v4_1/BreakoutNoFrameskip-v4.zip -n 5000







Enjoy a Trained Agent

If the trained agent exists, then you can see it in action using:

python -m rl_zoo3.enjoy --algo algo_name --env env_id





For example, enjoy A2C on Breakout during 5000 timesteps:

python -m rl_zoo3.enjoy --algo a2c --env BreakoutNoFrameskip-v4 --folder rl-trained-agents/ -n 5000







Hyperparameter Optimization

We use Optuna [https://optuna.org/] for optimizing the hyperparameters.

Tune the hyperparameters for PPO, using a random sampler and median pruner, 2 parallels jobs,
with a budget of 1000 trials and a maximum of 50000 steps:

python -m rl_zoo3.train --algo ppo --env MountainCar-v0 -n 50000 -optimize --n-trials 1000 --n-jobs 2 \
  --sampler random --pruner median







Colab Notebook: Try it Online!

You can train agents online using Google colab notebook [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/rl-baselines-zoo.ipynb].


Note

You can find more information about the rl baselines3 zoo in the repo README [https://github.com/DLR-RM/rl-baselines3-zoo]. For instance, how to record a video of a trained agent.







            

          

      

      

    

  

    
      
          
            
  
SB3 Contrib

We implement experimental features in a separate contrib repository:
SB3-Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]

This allows Stable-Baselines3 (SB3) to maintain a stable and compact core, while still
providing the latest features, like RecurrentPPO (PPO LSTM), Truncated Quantile Critics (TQC), Augmented Random Search (ARS), Trust Region Policy Optimization (TRPO) or
Quantile Regression DQN (QR-DQN).


Why create this repository?

Over the span of stable-baselines and stable-baselines3, the community
has been eager to contribute in form of better logging utilities,
environment wrappers, extended support (e.g. different action spaces)
and learning algorithms.

However sometimes these utilities were too niche to be considered for
stable-baselines or proved to be too difficult to integrate well into
the existing code without creating a mess. sb3-contrib aims to fix this by not
requiring the neatest code integration with existing code and not
setting limits on what is too niche: almost everything remotely useful
goes!
We hope this allows us to provide reliable implementations
following stable-baselines usual standards (consistent style, documentation, etc)
beyond the relatively small scope of utilities in the main repository.


Features

See documentation for the full list of included features.

RL Algorithms:


	Augmented Random Search (ARS) [https://arxiv.org/abs/1803.07055]


	Quantile Regression DQN (QR-DQN) [https://arxiv.org/abs/1710.10044]


	PPO with invalid action masking (Maskable PPO) [https://arxiv.org/abs/2006.14171]


	PPO with recurrent policy (RecurrentPPO aka PPO LSTM) [https://ppo-details.cleanrl.dev//2021/11/05/ppo-implementation-details/]


	Truncated Quantile Critics (TQC) [https://arxiv.org/abs/2005.04269]


	Trust Region Policy Optimization (TRPO) [https://arxiv.org/abs/1502.05477]




Gym Wrappers:


	Time Feature Wrapper [https://arxiv.org/abs/1712.00378]






Documentation

Documentation is available online: https://sb3-contrib.readthedocs.io/



Installation

To install Stable-Baselines3 contrib with pip, execute:

pip install sb3-contrib





We recommend to use the master version of Stable Baselines3 and SB3-Contrib.

To install Stable Baselines3 master version:

pip install git+https://github.com/DLR-RM/stable-baselines3





To install Stable Baselines3 contrib master version:

pip install git+https://github.com/Stable-Baselines-Team/stable-baselines3-contrib







Example

SB3-Contrib follows the SB3 API and folder structure. So, if you are familiar with SB3,
using SB3-Contrib should be easy too.

Here is an example of training a Quantile Regression DQN (QR-DQN) agent on the CartPole environment.

from sb3_contrib import QRDQN

policy_kwargs = dict(n_quantiles=50)
model = QRDQN("MlpPolicy", "CartPole-v1", policy_kwargs=policy_kwargs, verbose=1)
model.learn(total_timesteps=10000, log_interval=4)
model.save("qrdqn_cartpole")










            

          

      

      

    

  

    
      
          
            
  
Stable Baselines Jax (SBX)

Stable Baselines Jax (SBX) [https://github.com/araffin/sbx] is a proof of concept version of Stable-Baselines3 in Jax.

It provides a minimal number of features compared to SB3 but can be much faster (up to 20x times!): https://twitter.com/araffin2/status/1590714558628253698

Implemented algorithms:


	Soft Actor-Critic (SAC) and SAC-N


	Truncated Quantile Critics (TQC)


	Dropout Q-Functions for Doubly Efficient Reinforcement Learning (DroQ)


	Proximal Policy Optimization (PPO)


	Deep Q Network (DQN)




As SBX follows SB3 API, it is also compatible with the RL Zoo [https://github.com/DLR-RM/rl-baselines3-zoo].
For that you will need to create two files:

train_sbx.py:

import rl_zoo3
import rl_zoo3.train
from rl_zoo3.train import train
from sbx import DQN, PPO, SAC, TQC, DroQ


rl_zoo3.ALGOS["tqc"] = TQC
rl_zoo3.ALGOS["droq"] = DroQ
rl_zoo3.ALGOS["sac"] = SAC
rl_zoo3.ALGOS["ppo"] = PPO
rl_zoo3.ALGOS["dqn"] = DQN
rl_zoo3.train.ALGOS = rl_zoo3.ALGOS
rl_zoo3.exp_manager.ALGOS = rl_zoo3.ALGOS

if __name__ == "__main__":
    train()





Then you can call python train_sbx.py --algo sac --env Pendulum-v1 and use the RL Zoo CLI.

enjoy_sbx.py:

import rl_zoo3
import rl_zoo3.enjoy
from rl_zoo3.enjoy import enjoy
from sbx import DQN, PPO, SAC, TQC, DroQ


rl_zoo3.ALGOS["tqc"] = TQC
rl_zoo3.ALGOS["droq"] = DroQ
rl_zoo3.ALGOS["sac"] = SAC
rl_zoo3.ALGOS["ppo"] = PPO
rl_zoo3.ALGOS["dqn"] = DQN
rl_zoo3.enjoy.ALGOS = rl_zoo3.ALGOS
rl_zoo3.exp_manager.ALGOS = rl_zoo3.ALGOS

if __name__ == "__main__":
    enjoy()








            

          

      

      

    

  

    
      
          
            
  
Imitation Learning

The imitation [https://github.com/HumanCompatibleAI/imitation] library implements
imitation learning algorithms on top of Stable-Baselines3, including:



	Behavioral Cloning


	DAgger [https://arxiv.org/abs/1011.0686] with synthetic examples


	Adversarial Inverse Reinforcement Learning [https://arxiv.org/abs/1710.11248] (AIRL)


	Generative Adversarial Imitation Learning [https://arxiv.org/abs/1606.03476]  (GAIL)


	Deep RL from Human Preferences [https://arxiv.org/abs/1706.03741] (DRLHP)







You can install imitation with pip install imitation. The imitation
documentation [https://imitation.readthedocs.io/en/latest/] has more details
on how to use the library, including a quick start guide [https://imitation.readthedocs.io/en/latest/getting-started/first-steps.html]
for the impatient.




            

          

      

      

    

  

    
      
          
            
  
Migrating from Stable-Baselines

This is a guide to migrate from Stable-Baselines (SB2) to Stable-Baselines3 (SB3).

It also references the main changes.


Overview

Overall Stable-Baselines3 (SB3) keeps the high-level API of Stable-Baselines (SB2).
Most of the changes are to ensure more consistency and are internal ones.
Because of the backend change, from Tensorflow to PyTorch, the internal code is much much readable and easy to debug
at the cost of some speed (dynamic graph vs static graph., see Issue #90 [https://github.com/DLR-RM/stable-baselines3/issues/90])
However, the algorithms were extensively benchmarked on Atari games and continuous control PyBullet envs
(see Issue #48 [https://github.com/DLR-RM/stable-baselines3/issues/48]  and Issue #49 [https://github.com/DLR-RM/stable-baselines3/issues/49])
so you should not expect performance drop when switching from SB2 to SB3.



How to migrate?

In most cases, replacing from stable_baselines by from stable_baselines3 will be sufficient.
Some files were moved to the common folder (cf below) and could result to import errors.
Some algorithms were removed because of their complexity to improve the maintainability of the project.
We recommend reading this guide carefully to understand all the changes that were made.
You can also take a look at the rl-zoo3 [https://github.com/DLR-RM/rl-baselines3-zoo] and compare the imports
to the rl-zoo [https://github.com/araffin/rl-baselines-zoo] of SB2 to have a concrete example of successful migration.


Note

If you experience massive slow-down switching to PyTorch, you may need to play with the number of threads used,
using torch.set_num_threads(1) or OMP_NUM_THREADS=1, see issue #122 [https://github.com/DLR-RM/stable-baselines3/issues/122]
and issue #90 [https://github.com/DLR-RM/stable-baselines3/issues/90].





Breaking Changes


	SB3 requires python 3.7+ (instead of python 3.5+ for SB2)


	Dropped MPI support


	Dropped layer normalized policies (MlpLnLstmPolicy, CnnLnLstmPolicy)


	LSTM policies (`MlpLstmPolicy`, `CnnLstmPolicy`) are not supported for the time being
(see PR #53 [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/pull/53] for a recurrent PPO implementation)


	Dropped parameter noise for DDPG and DQN


	PPO is now closer to the original implementation (no clipping of the value function by default), cf PPO section below


	Orthogonal initialization is only used by A2C/PPO


	The features extractor (CNN extractor) is shared between policy and q-networks for DDPG/SAC/TD3 and only the policy loss used to update it (much faster)


	Tensorboard legacy logging was dropped in favor of having one logger for the terminal and Tensorboard (cf Tensorboard integration)


	We dropped ACKTR/ACER support because of their complexity compared to simpler alternatives (PPO, SAC, TD3) performing as good.


	We dropped GAIL support as we are focusing on model-free RL only, you can however take a look at the imitation project which implements
GAIL and other imitation learning algorithms on top of SB3.


	action_probability is currently not implemented in the base class


	pretrain() method for behavior cloning was removed (see issue #27 [https://github.com/DLR-RM/stable-baselines3/issues/27])




You can take a look at the issue about SB3 implementation design [https://github.com/hill-a/stable-baselines/issues/576] for more details.


Moved Files


	bench/monitor.py -> common/monitor.py


	logger.py -> common/logger.py


	results_plotter.py -> common/results_plotter.py


	common/cmd_util.py -> common/env_util.py




Utility functions are no longer exported from common module, you should import them with their absolute path, e.g.:

from stable_baselines3.common.env_util import make_atari_env, make_vec_env
from stable_baselines3.common.utils import set_random_seed





instead of from stable_baselines3.common import make_atari_env



Changes and renaming in parameters


Base-class (all algorithms)


	load_parameters -> set_parameters


	get/set_parameters return a dictionary mapping object names
to their respective PyTorch tensors and other objects representing
their parameters, instead of simpler mapping of parameter name to
a NumPy array. These functions also return PyTorch tensors rather
than NumPy arrays.










Policies


	cnn_extractor -> features_extractor, as features_extractor in now used with MlpPolicy too






A2C


	epsilon -> rms_prop_eps


	lr_schedule is part of learning_rate (it can be a callable).


	alpha, momentum are modifiable through policy_kwargs key optimizer_kwargs.





Warning

PyTorch implementation of RMSprop differs from Tensorflow’s [https://github.com/pytorch/pytorch/issues/23796],
which leads to different and potentially more unstable results [https://github.com/DLR-RM/stable-baselines3/pull/110#issuecomment-663255241].
Use stable_baselines3.common.sb2_compat.rmsprop_tf_like.RMSpropTFLike optimizer to match the results
with TensorFlow’s implementation. This can be done through policy_kwargs: A2C(policy_kwargs=dict(optimizer_class=RMSpropTFLike, optimizer_kwargs=dict(eps=1e-5)))





PPO


	cliprange -> clip_range


	cliprange_vf -> clip_range_vf


	nminibatches -> batch_size





Warning

nminibatches gave different batch size depending on the number of environments:  batch_size = (n_steps * n_envs) // nminibatches




	clip_range_vf behavior for PPO is slightly different: Set it to None (default) to deactivate clipping (in SB2, you had to pass -1, None meant to use clip_range for the clipping)


	lam -> gae_lambda


	noptepochs -> n_epochs




PPO default hyperparameters are the one tuned for continuous control environment.
We recommend taking a look at the RL Zoo for hyperparameters tuned for Atari games.



DQN

Only the vanilla DQN is implemented right now but extensions will follow.
Default hyperparameters are taken from the Nature paper, except for the optimizer and learning rate that were taken from Stable Baselines defaults.



DDPG

DDPG now follows the same interface as SAC/TD3.
For state/reward normalization, you should use VecNormalize as for all other algorithms.



SAC/TD3

SAC/TD3 now accept any number of critics, e.g. policy_kwargs=dict(n_critics=3), instead of only two before.


Note

SAC/TD3 default hyperparameters (including network architecture) now match the ones from the original papers.
DDPG is using TD3 defaults.





SAC

SAC implementation matches the latest version of the original implementation: it uses two Q function networks and two target Q function networks
instead of two Q function networks and one Value function network (SB2 implementation, first version of the original implementation).
Despite this change, no change in performance should be expected.


Note

SAC predict() method has now deterministic=False by default for consistency.
To match SB2 behavior, you need to explicitly pass deterministic=True





HER

The HER implementation now only supports online sampling of the new goals. This is done in a vectorized version.
The goal selection strategy RANDOM is no longer supported.




New logger API


	Methods were renamed in the logger:


	logkv -> record, writekvs -> write, writeseq ->  write_sequence,


	logkvs -> record_dict, dumpkvs -> dump,


	getkvs -> get_log_dict, logkv_mean -> record_mean,










Internal Changes

Please read the Developer Guide section.




New Features (SB3 vs SB2)


	Much cleaner and consistent base code (and no more warnings =D!) and static type checks


	Independent saving/loading/predict for policies


	A2C now supports Generalized Advantage Estimation (GAE) and advantage normalization (both are deactivated by default)


	Generalized State-Dependent Exploration (gSDE) exploration is available for A2C/PPO/SAC. It allows to use RL directly on real robots (cf https://arxiv.org/abs/2005.05719)


	Better saving/loading: optimizers are now included in the saved parameters and there is two new methods save_replay_buffer and load_replay_buffer for the replay buffer when using off-policy algorithms (DQN/DDPG/SAC/TD3)


	You can pass optimizer_class and optimizer_kwargs to policy_kwargs in order to easily
customize optimizers


	Seeding now works properly to have deterministic results


	Replay buffer does not grow, allocate everything at build time (faster)


	We added a memory efficient replay buffer variant (pass optimize_memory_usage=True to the constructor), it reduces drastically the memory used especially when using images


	You can specify an arbitrary number of critics for SAC/TD3 (e.g. policy_kwargs=dict(n_critics=3))








            

          

      

      

    

  

    
      
          
            
  
Dealing with NaNs and infs

During the training of a model on a given environment, it is possible that the RL model becomes completely
corrupted when a NaN or an inf is given or returned from the RL model.


How and why?

The issue arises when NaNs or infs do not crash, but simply get propagated through the training,
until all the floating point number converge to NaN or inf. This is in line with the
IEEE Standard for Floating-Point Arithmetic (IEEE 754) [https://ieeexplore.ieee.org/document/4610935] standard, as it says:


Note


	Five possible exceptions can occur:
	
	Invalid operation (\(\sqrt{-1}\), \(\inf \times 1\), \(\text{NaN}\ \mathrm{mod}\ 1\), …) return NaN


	
	Division by zero:
	
	if the operand is not zero (\(1/0\), \(-2/0\), …) returns \(\pm\inf\)


	if the operand is zero (\(0/0\)) returns signaling NaN










	Overflow (exponent too high to represent) returns \(\pm\inf\)


	Underflow (exponent too low to represent) returns \(0\)


	Inexact (not representable exactly in base 2, eg: \(1/5\)) returns the rounded value (ex: assert (1/5) * 3 == 0.6000000000000001)










And of these, only Division by zero will signal an exception, the rest will propagate invalid values quietly.

In python, dividing by zero will indeed raise the exception: ZeroDivisionError: float division by zero,
but ignores the rest.

The default in numpy, will warn: RuntimeWarning: invalid value encountered
but will not halt the code.



Anomaly detection with PyTorch

To enable NaN detection in PyTorch you can do

import torch as th
th.autograd.set_detect_anomaly(True)







Numpy parameters

Numpy has a convenient way of dealing with invalid value: numpy.seterr [https://docs.scipy.org/doc/numpy/reference/generated/numpy.seterr.html],
which defines for the python process, how it should handle floating point error.

import numpy as np

np.seterr(all="raise")  # define before your code.

print("numpy test:")

a = np.float64(1.0)
b = np.float64(0.0)
val = a / b  # this will now raise an exception instead of a warning.
print(val)





but this will also avoid overflow issues on floating point numbers:

import numpy as np

np.seterr(all="raise")  # define before your code.

print("numpy overflow test:")

a = np.float64(10)
b = np.float64(1000)
val = a ** b  # this will now raise an exception
print(val)





but will not avoid the propagation issues:

import numpy as np

np.seterr(all="raise")  # define before your code.

print("numpy propagation test:")

a = np.float64("NaN")
b = np.float64(1.0)
val = a + b  # this will neither warn nor raise anything
print(val)







VecCheckNan Wrapper

In order to find when and from where the invalid value originated from, stable-baselines3 comes with a VecCheckNan wrapper.

It will monitor the actions, observations, and rewards, indicating what action or observation caused it and from what.

import gymnasium as gym
from gymnasium import spaces
import numpy as np

from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv, VecCheckNan

class NanAndInfEnv(gym.Env):
    """Custom Environment that raised NaNs and Infs"""
    metadata = {"render.modes": ["human"]}

    def __init__(self):
        super(NanAndInfEnv, self).__init__()
        self.action_space = spaces.Box(low=-np.inf, high=np.inf, shape=(1,), dtype=np.float64)
        self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(1,), dtype=np.float64)

    def step(self, _action):
        randf = np.random.rand()
        if randf > 0.99:
            obs = float("NaN")
        elif randf > 0.98:
            obs = float("inf")
        else:
            obs = randf
        return [obs], 0.0, False, {}

    def reset(self):
        return [0.0]

    def render(self, close=False):
        pass

# Create environment
env = DummyVecEnv([lambda: NanAndInfEnv()])
env = VecCheckNan(env, raise_exception=True)

# Instantiate the agent
model = PPO("MlpPolicy", env)

# Train the agent
model.learn(total_timesteps=int(2e5))  # this will crash explaining that the invalid value originated from the environment.







RL Model hyperparameters

Depending on your hyperparameters, NaN can occurs much more often.
A great example of this: https://github.com/hill-a/stable-baselines/issues/340

Be aware, the hyperparameters given by default seem to work in most cases,
however your environment might not play nice with them.
If this is the case, try to read up on the effect each hyperparameters has on the model,
so that you can try and tune them to get a stable model. Alternatively, you can try automatic hyperparameter tuning (included in the rl zoo).



Missing values from datasets

If your environment is generated from an external dataset, do not forget to make sure your dataset does not contain NaNs.
As some datasets will sometimes fill missing values with NaNs as a surrogate value.

Here is some reading material about finding NaNs: https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html

And filling the missing values with something else (imputation): https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4





            

          

      

      

    

  

    
      
          
            
  
Developer Guide

This guide is meant for those who want to understand the internals and the design choices of Stable-Baselines3.

At first, you should read the two issues where the design choices were discussed:


	https://github.com/hill-a/stable-baselines/issues/576


	https://github.com/hill-a/stable-baselines/issues/733




The library is not meant to be modular, although inheritance is used to reduce code duplication.


Algorithms Structure

Each algorithm (on-policy and off-policy ones) follows a common structure.
Policy contains code for acting in the environment, and algorithm updates this policy.
There is one folder per algorithm, and in that folder there is the algorithm and the policy definition (policies.py).

Each algorithm has two main methods:


	.collect_rollouts() which defines how new samples are collected, usually inherited from the base class. Those samples are then stored in a RolloutBuffer (discarded after the gradient update) or ReplayBuffer


	.train() which updates the parameters using samples from the buffer




[image: ../_images/sb3_loop.png]


Where to start?

The first thing you need to read and understand are the base classes in the common/ folder:


	BaseAlgorithm in base_class.py which defines how an RL class should look like.
It contains also all the “glue code” for saving/loading and the common operations (wrapping environments)


	BasePolicy in policies.py which defines how a policy class should look like.
It contains also all the magic for the .predict() method, to handle as many spaces/cases as possible


	OffPolicyAlgorithm in off_policy_algorithm.py that contains the implementation of collect_rollouts() for the off-policy algorithms,
and similarly OnPolicyAlgorithm in on_policy_algorithm.py.




All the environments handled internally are assumed to be VecEnv (gym.Env are automatically wrapped).



Pre-Processing

To handle different observation spaces, some pre-processing needs to be done (e.g. one-hot encoding for discrete observation).
Most of the code for pre-processing is in common/preprocessing.py and common/policies.py.

For images, environment is automatically wrapped with VecTransposeImage if observations are detected to be images with
channel-last convention to transform it to PyTorch’s channel-first convention.



Policy Structure

When we refer to “policy” in Stable-Baselines3, this is usually an abuse of language compared to RL terminology.
In SB3, “policy” refers to the class that handles all the networks useful for training,
so not only the network used to predict actions (the “learned controller”).
For instance, the TD3 policy contains the actor, the critic and the target networks.

To avoid the hassle of importing specific policy classes for specific algorithm (e.g. both A2C and PPO use ActorCriticPolicy),
SB3 uses names like “MlpPolicy” and “CnnPolicy” to refer policies using small feed-forward networks or convolutional networks,
respectively. Importing [algorithm]/policies.py registers an appropriate policy for that algorithm under those names.



Probability distributions

When needed, the policies handle the different probability distributions.
All distributions are located in common/distributions.py and follow the same interface.
Each distribution corresponds to a type of action space (e.g. Categorical is the one used for discrete actions.
For continuous actions, we can use multiple distributions (“DiagGaussian”, “SquashedGaussian” or “StateDependentDistribution”)



State-Dependent Exploration

State-Dependent Exploration (SDE) is a type of exploration that allows to use RL directly on real robots,
that was the starting point for the Stable-Baselines3 library.
I (@araffin) published a paper about a generalized version of SDE (the one implemented in SB3): https://arxiv.org/abs/2005.05719



Misc

The rest of the common/ is composed of helpers (e.g. evaluation helpers) or basic components (like the callbacks).
The type_aliases.py file contains common type hint aliases like GymStepReturn.

Et voilà?

After reading this guide and the mentioned files, you should be now able to understand the design logic behind the library ;)





            

          

      

      

    

  

    
      
          
            
  
On saving and loading

Stable Baselines3 (SB3) stores both neural network parameters and algorithm-related parameters such as
exploration schedule, number of environments and observation/action space. This allows continual learning and easy
use of trained agents without training, but it is not without its issues. Following describes the format
used to save agents in SB3 along with its pros and shortcomings.

Terminology used in this page:


	parameters refer to neural network parameters (also called “weights”). This is a dictionary
mapping variable name to a PyTorch tensor.


	data refers to RL algorithm parameters, e.g. learning rate, exploration schedule, action/observation space.
These depend on the algorithm used. This is a dictionary mapping classes variable names to their values.





Zip-archive

A zip-archived JSON dump, PyTorch state dictionaries and PyTorch variables. The data dictionary (class parameters)
is stored as a JSON file, model parameters and optimizers are serialized with torch.save() function and these files
are stored under a single .zip archive.

Any objects that are not JSON serializable are serialized with cloudpickle and stored as base64-encoded
string in the JSON file, along with some information that was stored in the serialization. This allows
inspecting stored objects without deserializing the object itself.

This format allows skipping elements in the file, i.e. we can skip deserializing objects that are
broken/non-serializable.
This can be done via custom_objects argument to load functions.


Note

If you encounter loading issue, for instance pickle issues or error after loading
(see #171 [https://github.com/DLR-RM/stable-baselines3/issues/171] or #573 [https://github.com/DLR-RM/stable-baselines3/issues/573]),
you can pass print_system_info=True
to compare the system on which the model was trained vs the current one
model = PPO.load("ppo_saved", print_system_info=True)



File structure:

saved_model.zip/
├── data              JSON file of class-parameters (dictionary)
├── *.optimizer.pth   PyTorch optimizers serialized
├── policy.pth        PyTorch state dictionary of the policy saved
├── pytorch_variables.pth Additional PyTorch variables
├── _stable_baselines3_version contains the SB3 version with which the model was saved
├── system_info.txt contains system info (os, python version, ...) on which the model was saved





Pros:


	More robust to unserializable objects (one bad object does not break everything).


	Saved files can be inspected/extracted with zip-archive explorers and by other languages.




Cons:


	More complex implementation.


	Still relies partly on cloudpickle for complex objects (e.g. custom functions)
with can lead to incompatibilities [https://github.com/DLR-RM/stable-baselines3/issues/172] between Python versions.








            

          

      

      

    

  

    
      
          
            
  
Exporting models

After training an agent, you may want to deploy/use it in another language
or framework, like tensorflowjs [https://github.com/tensorflow/tfjs].
Stable Baselines3 does not include tools to export models to other frameworks, but
this document aims to cover parts that are required for exporting along with
more detailed stories from users of Stable Baselines3.


Background

In Stable Baselines3, the controller is stored inside policies which convert
observations into actions. Each learning algorithm (e.g. DQN, A2C, SAC)
contains a policy object which represents the currently learned behavior,
accessible via model.policy.

Policies hold enough information to do the inference (i.e. predict actions),
so it is enough to export these policies (cf examples)
to do inference in another framework.


Warning

When using CNN policies, the observation is normalized during pre-preprocessing.
This pre-processing is done inside the policy (dividing by 255 to have values in [0, 1])





Export to ONNX

As of June 2021, ONNX format  doesn’t support [https://github.com/onnx/onnx/issues/3033] exporting models that use the broadcast_tensors functionality of pytorch. So in order to export the trained stable-baseline3 models in the ONNX format, we need to first remove the layers that use broadcasting. This can be done by creating a class that removes the unsupported layers.

The following examples are for MlpPolicy only, and are general examples. Note that you have to preprocess the observation the same way stable-baselines3 agent does (see common.preprocessing.preprocess_obs).

For PPO, assuming a shared feature extractor.


Warning

The following example is for continuous actions only.
When using discrete or binary actions, you must do some post-processing [https://github.com/DLR-RM/stable-baselines3/blob/f3a35aa786ee41ffff599b99fa1607c067e89074/stable_baselines3/common/policies.py#L621-L637]
to obtain the action (e.g., convert action logits to action).



import torch as th

from stable_baselines3 import PPO


class OnnxablePolicy(th.nn.Module):
    def __init__(self, extractor, action_net, value_net):
        super().__init__()
        self.extractor = extractor
        self.action_net = action_net
        self.value_net = value_net

    def forward(self, observation):
        # NOTE: You may have to process (normalize) observation in the correct
        #       way before using this. See `common.preprocessing.preprocess_obs`
        action_hidden, value_hidden = self.extractor(observation)
        return self.action_net(action_hidden), self.value_net(value_hidden)


# Example: model = PPO("MlpPolicy", "Pendulum-v1")
model = PPO.load("PathToTrainedModel.zip", device="cpu")
onnxable_model = OnnxablePolicy(
    model.policy.mlp_extractor, model.policy.action_net, model.policy.value_net
)

observation_size = model.observation_space.shape
dummy_input = th.randn(1, *observation_size)
th.onnx.export(
    onnxable_model,
    dummy_input,
    "my_ppo_model.onnx",
    opset_version=9,
    input_names=["input"],
)

##### Load and test with onnx

import onnx
import onnxruntime as ort
import numpy as np

onnx_path = "my_ppo_model.onnx"
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)

observation = np.zeros((1, *observation_size)).astype(np.float32)
ort_sess = ort.InferenceSession(onnx_path)
action, value = ort_sess.run(None, {"input": observation})





For SAC the procedure is similar. The example shown only exports the actor network as the actor is sufficient to roll out the trained policies.

import torch as th

from stable_baselines3 import SAC


class OnnxablePolicy(th.nn.Module):
    def __init__(self, actor: th.nn.Module):
        super().__init__()
        # Removing the flatten layer because it can't be onnxed
        self.actor = th.nn.Sequential(
            actor.latent_pi,
            actor.mu,
            # For gSDE
            # th.nn.Hardtanh(min_val=-actor.clip_mean, max_val=actor.clip_mean),
            # Squash the output
            th.nn.Tanh(),
        )

    def forward(self, observation: th.Tensor) -> th.Tensor:
        # NOTE: You may have to process (normalize) observation in the correct
        #       way before using this. See `common.preprocessing.preprocess_obs`
        return self.actor(observation)


# Example: model = SAC("MlpPolicy", "Pendulum-v1")
model = SAC.load("PathToTrainedModel.zip", device="cpu")
onnxable_model = OnnxablePolicy(model.policy.actor)

observation_size = model.observation_space.shape
dummy_input = th.randn(1, *observation_size)
th.onnx.export(
    onnxable_model,
    dummy_input,
    "my_sac_actor.onnx",
    opset_version=9,
    input_names=["input"],
)

##### Load and test with onnx

import onnxruntime as ort
import numpy as np

onnx_path = "my_sac_actor.onnx"

observation = np.zeros((1, *observation_size)).astype(np.float32)
ort_sess = ort.InferenceSession(onnx_path)
action = ort_sess.run(None, {"input": observation})





For more discussion around the topic refer to this issue. [https://github.com/DLR-RM/stable-baselines3/issues/383]



Trace/Export to C++

You can use PyTorch JIT to trace and save a trained model that can be re-used in other applications
(for instance inference code written in C++).

There is a draft PR in the RL Zoo about C++ export: https://github.com/DLR-RM/rl-baselines3-zoo/pull/228

# See "ONNX export" for imports and OnnxablePolicy
jit_path = "sac_traced.pt"

# Trace and optimize the module
traced_module = th.jit.trace(onnxable_model.eval(), dummy_input)
frozen_module = th.jit.freeze(traced_module)
frozen_module = th.jit.optimize_for_inference(frozen_module)
th.jit.save(frozen_module, jit_path)

##### Load and test with torch

import torch as th

dummy_input = th.randn(1, *observation_size)
loaded_module = th.jit.load(jit_path)
action_jit = loaded_module(dummy_input)







Export to tensorflowjs / ONNX-JS

TODO: contributors help is welcomed!
Probably a good starting point: https://github.com/elliotwaite/pytorch-to-javascript-with-onnx-js



Export to TFLite / Coral (Edge TPU)

Full example code: https://github.com/chunky/sb3_to_coral

Google created a chip called the “Coral” for deploying AI to the
edge. It’s available in a variety of form factors, including USB (using
the Coral on a Rasbperry pi, with a SB3-developed model, was the original
motivation for the code example above).

The Coral chip is fast, with very low power consumption, but only has limited
on-device training abilities. More information is on the webpage here:
https://coral.ai.

To deploy to a Coral, one must work via TFLite, and quantise the
network to reflect the Coral’s capabilities. The full chain to go from
SB3 to Coral is: SB3 (Torch) => ONNX => TensorFlow => TFLite => Coral.

The code linked above is a complete, minimal, example that:


	Creates a model using SB3


	Follows the path of exports all the way to TFLite and Google Coral


	Demonstrates the forward pass for most exported variants




There are a number of pitfalls along the way to the complete conversion
that this example covers, including:


	Making the Gym’s observation work with ONNX properly


	Quantising the TFLite model appropriately to align with Gym
while still taking advantage of Coral


	Using OnnxablePolicy described as described in the above example






Manual export

You can also manually export required parameters (weights) and construct the
network in your desired framework.

You can access parameters of the model via agents’
get_parameters function.
As policies are also PyTorch modules, you can also access model.policy.state_dict() directly.
To find the architecture of the networks for each algorithm, best is to check the policies.py file located
in their respective folders.


Note

In most cases, we recommend using PyTorch methods state_dict() and load_state_dict() from the policy,
unless you need to access the optimizers’ state dict too. In that case, you need to call get_parameters().







            

          

      

      

    

  

    
      
          
            
  Abstract base classes for RL algorithms.


Base RL Class

Common interface for all the RL algorithms


	
class stable_baselines3.common.base_class.BaseAlgorithm(policy, env, learning_rate, policy_kwargs=None, stats_window_size=100, tensorboard_log=None, verbose=0, device='auto', support_multi_env=False, monitor_wrapper=True, seed=None, use_sde=False, sde_sample_freq=-1, supported_action_spaces=None)

	The base of RL algorithms


	Parameters:

	
	policy (Union[str, Type[BasePolicy]]) – The policy model to use (MlpPolicy, CnnPolicy, …)


	env (Union[Env, VecEnv, str, None]) – The environment to learn from
(if registered in Gym, can be str. Can be None for loading trained models)


	learning_rate (Union[float, Callable[[float], float]]) – learning rate for the optimizer,
it can be a function of the current progress remaining (from 1 to 0)


	policy_kwargs (Optional[Dict[str, Any]]) – Additional arguments to be passed to the policy on creation


	stats_window_size (int) – Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over


	tensorboard_log (Optional[str]) – the log location for tensorboard (if None, no logging)


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages


	device (Union[device, str]) – Device on which the code should run.
By default, it will try to use a Cuda compatible device and fallback to cpu
if it is not possible.


	support_multi_env (bool) – Whether the algorithm supports training
with multiple environments (as in A2C)


	monitor_wrapper (bool) – When creating an environment, whether to wrap it
or not in a Monitor wrapper.


	seed (Optional[int]) – Seed for the pseudo random generators


	use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)


	sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)


	supported_action_spaces (Optional[Tuple[Type[Space], ...]]) – The action spaces supported by the algorithm.









	
get_env()

	Returns the current environment (can be None if not defined).


	Return type:

	Optional[VecEnv]



	Returns:

	The current environment










	
get_parameters()

	Return the parameters of the agent. This includes parameters from different networks, e.g.
critics (value functions) and policies (pi functions).


	Return type:

	Dict[str, Dict]



	Returns:

	Mapping of from names of the objects to PyTorch state-dicts.










	
get_vec_normalize_env()

	Return the VecNormalize wrapper of the training env
if it exists.


	Return type:

	Optional[VecNormalize]



	Returns:

	The VecNormalize env.










	
abstract learn(total_timesteps, callback=None, log_interval=100, tb_log_name='run', reset_num_timesteps=True, progress_bar=False)

	Return a trained model.


	Parameters:

	
	total_timesteps (int) – The total number of samples (env steps) to train on


	callback (Union[None, Callable, List[BaseCallback], BaseCallback]) – callback(s) called at every step with state of the algorithm.


	log_interval (int) – The number of episodes before logging.


	tb_log_name (str) – the name of the run for TensorBoard logging


	reset_num_timesteps (bool) – whether or not to reset the current timestep number (used in logging)


	progress_bar (bool) – Display a progress bar using tqdm and rich.






	Return type:

	TypeVar(SelfBaseAlgorithm, bound= BaseAlgorithm)



	Returns:

	the trained model










	
classmethod load(path, env=None, device='auto', custom_objects=None, print_system_info=False, force_reset=True, **kwargs)

	Load the model from a zip-file.
Warning: load re-creates the model from scratch, it does not update it in-place!
For an in-place load use set_parameters instead.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file (or a file-like) where to
load the agent from


	env (Union[Env, VecEnv, None]) – the new environment to run the loaded model on
(can be None if you only need prediction from a trained model) has priority over any saved environment


	device (Union[device, str]) – Device on which the code should run.


	custom_objects (Optional[Dict[str, Any]]) – Dictionary of objects to replace
upon loading. If a variable is present in this dictionary as a
key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in
keras.models.load_model. Useful when you have an object in
file that can not be deserialized.


	print_system_info (bool) – Whether to print system info from the saved model
and the current system info (useful to debug loading issues)


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See https://github.com/DLR-RM/stable-baselines3/issues/597


	kwargs – extra arguments to change the model when loading






	Return type:

	TypeVar(SelfBaseAlgorithm, bound= BaseAlgorithm)



	Returns:

	new model instance with loaded parameters










	
property logger: Logger

	Getter for the logger object.






	
predict(observation, state=None, episode_start=None, deterministic=False)

	Get the policy action from an observation (and optional hidden state).
Includes sugar-coating to handle different observations (e.g. normalizing images).


	Parameters:

	
	observation (Union[ndarray, Dict[str, ndarray]]) – the input observation


	state (Optional[Tuple[ndarray, ...]]) – The last hidden states (can be None, used in recurrent policies)


	episode_start (Optional[ndarray]) – The last masks (can be None, used in recurrent policies)
this correspond to beginning of episodes,
where the hidden states of the RNN must be reset.


	deterministic (bool) – Whether or not to return deterministic actions.






	Return type:

	Tuple[ndarray, Optional[Tuple[ndarray, ...]]]



	Returns:

	the model’s action and the next hidden state
(used in recurrent policies)










	
save(path, exclude=None, include=None)

	Save all the attributes of the object and the model parameters in a zip-file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file where the rl agent should be saved


	exclude (Optional[Iterable[str]]) – name of parameters that should be excluded in addition to the default ones


	include (Optional[Iterable[str]]) – name of parameters that might be excluded but should be included anyway






	Return type:

	None










	
set_env(env, force_reset=True)

	Checks the validity of the environment, and if it is coherent, set it as the current environment.
Furthermore wrap any non vectorized env into a vectorized
checked parameters:
- observation_space
- action_space


	Parameters:

	
	env (Union[Env, VecEnv]) – The environment for learning a policy


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See issue https://github.com/DLR-RM/stable-baselines3/issues/597






	Return type:

	None










	
set_logger(logger)

	Setter for for logger object.
:rtype: None


Warning

When passing a custom logger object,
this will overwrite tensorboard_log and verbose settings
passed to the constructor.








	
set_parameters(load_path_or_dict, exact_match=True, device='auto')

	Load parameters from a given zip-file or a nested dictionary containing parameters for
different modules (see get_parameters).


	Parameters:

	
	load_path_or_iter – Location of the saved data (path or file-like, see save), or a nested
dictionary containing nn.Module parameters used by the policy. The dictionary maps
object names to a state-dictionary returned by torch.nn.Module.state_dict().


	exact_match (bool) – If True, the given parameters should include parameters for each
module and each of their parameters, otherwise raises an Exception. If set to False, this
can be used to update only specific parameters.


	device (Union[device, str]) – Device on which the code should run.






	Return type:

	None










	
set_random_seed(seed=None)

	Set the seed of the pseudo-random generators
(python, numpy, pytorch, gym, action_space)


	Parameters:

	seed (Optional[int]) – 



	Return type:

	None














Base Off-Policy Class

The base RL algorithm for Off-Policy algorithm (ex: SAC/TD3)


	
class stable_baselines3.common.off_policy_algorithm.OffPolicyAlgorithm(policy, env, learning_rate, buffer_size=1000000, learning_starts=100, batch_size=256, tau=0.005, gamma=0.99, train_freq=(1, 'step'), gradient_steps=1, action_noise=None, replay_buffer_class=None, replay_buffer_kwargs=None, optimize_memory_usage=False, policy_kwargs=None, stats_window_size=100, tensorboard_log=None, verbose=0, device='auto', support_multi_env=False, monitor_wrapper=True, seed=None, use_sde=False, sde_sample_freq=-1, use_sde_at_warmup=False, sde_support=True, supported_action_spaces=None)

	The base for Off-Policy algorithms (ex: SAC/TD3)


	Parameters:

	
	policy (Union[str, Type[BasePolicy]]) – The policy model to use (MlpPolicy, CnnPolicy, …)


	env (Union[Env, VecEnv, str]) – The environment to learn from
(if registered in Gym, can be str. Can be None for loading trained models)


	learning_rate (Union[float, Callable[[float], float]]) – learning rate for the optimizer,
it can be a function of the current progress remaining (from 1 to 0)


	buffer_size (int) – size of the replay buffer


	learning_starts (int) – how many steps of the model to collect transitions for before learning starts


	batch_size (int) – Minibatch size for each gradient update


	tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1)


	gamma (float) – the discount factor


	train_freq (Union[int, Tuple[int, str]]) – Update the model every train_freq steps. Alternatively pass a tuple of frequency and unit
like (5, "step") or (2, "episode").


	gradient_steps (int) – How many gradient steps to do after each rollout (see train_freq)
Set to -1 means to do as many gradient steps as steps done in the environment
during the rollout.


	action_noise (Optional[ActionNoise]) – the action noise type (None by default), this can help
for hard exploration problem. Cf common.noise for the different action noise type.


	replay_buffer_class (Optional[Type[ReplayBuffer]]) – Replay buffer class to use (for instance HerReplayBuffer).
If None, it will be automatically selected.


	replay_buffer_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the replay buffer on creation.


	optimize_memory_usage (bool) – Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195


	policy_kwargs (Optional[Dict[str, Any]]) – Additional arguments to be passed to the policy on creation


	stats_window_size (int) – Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over


	tensorboard_log (Optional[str]) – the log location for tensorboard (if None, no logging)


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages


	device (Union[device, str]) – Device on which the code should run.
By default, it will try to use a Cuda compatible device and fallback to cpu
if it is not possible.


	support_multi_env (bool) – Whether the algorithm supports training
with multiple environments (as in A2C)


	monitor_wrapper (bool) – When creating an environment, whether to wrap it
or not in a Monitor wrapper.


	seed (Optional[int]) – Seed for the pseudo random generators


	use_sde (bool) – Whether to use State Dependent Exploration (SDE)
instead of action noise exploration (default: False)


	sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)


	use_sde_at_warmup (bool) – Whether to use gSDE instead of uniform sampling
during the warm up phase (before learning starts)


	sde_support (bool) – Whether the model support gSDE or not


	supported_action_spaces (Optional[Tuple[Type[Space], ...]]) – The action spaces supported by the algorithm.









	
collect_rollouts(env, callback, train_freq, replay_buffer, action_noise=None, learning_starts=0, log_interval=None)

	Collect experiences and store them into a ReplayBuffer.


	Parameters:

	
	env (VecEnv) – The training environment


	callback (BaseCallback) – Callback that will be called at each step
(and at the beginning and end of the rollout)


	train_freq (TrainFreq) – How much experience to collect
by doing rollouts of current policy.
Either TrainFreq(<n>, TrainFrequencyUnit.STEP)
or TrainFreq(<n>, TrainFrequencyUnit.EPISODE)
with <n> being an integer greater than 0.


	action_noise (Optional[ActionNoise]) – Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.


	learning_starts (int) – Number of steps before learning for the warm-up phase.


	replay_buffer (ReplayBuffer) – 


	log_interval (Optional[int]) – Log data every log_interval episodes






	Return type:

	RolloutReturn



	Returns:

	










	
learn(total_timesteps, callback=None, log_interval=4, tb_log_name='run', reset_num_timesteps=True, progress_bar=False)

	Return a trained model.


	Parameters:

	
	total_timesteps (int) – The total number of samples (env steps) to train on


	callback (Union[None, Callable, List[BaseCallback], BaseCallback]) – callback(s) called at every step with state of the algorithm.


	log_interval (int) – The number of episodes before logging.


	tb_log_name (str) – the name of the run for TensorBoard logging


	reset_num_timesteps (bool) – whether or not to reset the current timestep number (used in logging)


	progress_bar (bool) – Display a progress bar using tqdm and rich.






	Return type:

	TypeVar(SelfOffPolicyAlgorithm, bound= OffPolicyAlgorithm)



	Returns:

	the trained model










	
load_replay_buffer(path, truncate_last_traj=True)

	Load a replay buffer from a pickle file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – Path to the pickled replay buffer.


	truncate_last_traj (bool) – When using HerReplayBuffer with online sampling:
If set to True, we assume that the last trajectory in the replay buffer was finished
(and truncate it).
If set to False, we assume that we continue the same trajectory (same episode).






	Return type:

	None










	
save_replay_buffer(path)

	Save the replay buffer as a pickle file.


	Parameters:

	path (Union[str, Path, BufferedIOBase]) – Path to the file where the replay buffer should be saved.
if path is a str or pathlib.Path, the path is automatically created if necessary.



	Return type:

	None










	
train(gradient_steps, batch_size)

	Sample the replay buffer and do the updates
(gradient descent and update target networks)


	Return type:

	None















Base On-Policy Class

The base RL algorithm for On-Policy algorithm (ex: A2C/PPO)


	
class stable_baselines3.common.on_policy_algorithm.OnPolicyAlgorithm(policy, env, learning_rate, n_steps, gamma, gae_lambda, ent_coef, vf_coef, max_grad_norm, use_sde, sde_sample_freq, stats_window_size=100, tensorboard_log=None, monitor_wrapper=True, policy_kwargs=None, verbose=0, seed=None, device='auto', _init_setup_model=True, supported_action_spaces=None)

	The base for On-Policy algorithms (ex: A2C/PPO).


	Parameters:

	
	policy (Union[str, Type[ActorCriticPolicy]]) – The policy model to use (MlpPolicy, CnnPolicy, …)


	env (Union[Env, VecEnv, str]) – The environment to learn from (if registered in Gym, can be str)


	learning_rate (Union[float, Callable[[float], float]]) – The learning rate, it can be a function
of the current progress remaining (from 1 to 0)


	n_steps (int) – The number of steps to run for each environment per update
(i.e. batch size is n_steps * n_env where n_env is number of environment copies running in parallel)


	gamma (float) – Discount factor


	gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage Estimator.
Equivalent to classic advantage when set to 1.


	ent_coef (float) – Entropy coefficient for the loss calculation


	vf_coef (float) – Value function coefficient for the loss calculation


	max_grad_norm (float) – The maximum value for the gradient clipping


	use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)


	sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)


	stats_window_size (int) – Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over


	tensorboard_log (Optional[str]) – the log location for tensorboard (if None, no logging)


	monitor_wrapper (bool) – When creating an environment, whether to wrap it
or not in a Monitor wrapper.


	policy_kwargs (Optional[Dict[str, Any]]) – additional arguments to be passed to the policy on creation


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages


	seed (Optional[int]) – Seed for the pseudo random generators


	device (Union[device, str]) – Device (cpu, cuda, …) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.


	_init_setup_model (bool) – Whether or not to build the network at the creation of the instance


	supported_action_spaces (Optional[Tuple[Type[Space], ...]]) – The action spaces supported by the algorithm.









	
collect_rollouts(env, callback, rollout_buffer, n_rollout_steps)

	Collect experiences using the current policy and fill a RolloutBuffer.
The term rollout here refers to the model-free notion and should not
be used with the concept of rollout used in model-based RL or planning.


	Parameters:

	
	env (VecEnv) – The training environment


	callback (BaseCallback) – Callback that will be called at each step
(and at the beginning and end of the rollout)


	rollout_buffer (RolloutBuffer) – Buffer to fill with rollouts


	n_rollout_steps (int) – Number of experiences to collect per environment






	Return type:

	bool



	Returns:

	True if function returned with at least n_rollout_steps
collected, False if callback terminated rollout prematurely.










	
learn(total_timesteps, callback=None, log_interval=1, tb_log_name='OnPolicyAlgorithm', reset_num_timesteps=True, progress_bar=False)

	Return a trained model.


	Parameters:

	
	total_timesteps (int) – The total number of samples (env steps) to train on


	callback (Union[None, Callable, List[BaseCallback], BaseCallback]) – callback(s) called at every step with state of the algorithm.


	log_interval (int) – The number of episodes before logging.


	tb_log_name (str) – the name of the run for TensorBoard logging


	reset_num_timesteps (bool) – whether or not to reset the current timestep number (used in logging)


	progress_bar (bool) – Display a progress bar using tqdm and rich.






	Return type:

	TypeVar(SelfOnPolicyAlgorithm, bound= OnPolicyAlgorithm)



	Returns:

	the trained model










	
train()

	Consume current rollout data and update policy parameters.
Implemented by individual algorithms.


	Return type:

	None

















            

          

      

      

    

  

    
      
          
            
  
A2C

A synchronous, deterministic variant of Asynchronous Advantage Actor Critic (A3C) [https://arxiv.org/abs/1602.01783].
It uses multiple workers to avoid the use of a replay buffer.


Warning

If you find training unstable or want to match performance of stable-baselines A2C, consider using
RMSpropTFLike optimizer from stable_baselines3.common.sb2_compat.rmsprop_tf_like.
You can change optimizer with A2C(policy_kwargs=dict(optimizer_class=RMSpropTFLike, optimizer_kwargs=dict(eps=1e-5))).
Read more here [https://github.com/DLR-RM/stable-baselines3/pull/110#issuecomment-663255241].




Notes


	Original paper:  https://arxiv.org/abs/1602.01783


	OpenAI blog post: https://openai.com/blog/baselines-acktr-a2c/






Can I use?


	Recurrent policies: ❌


	Multi processing: ✔️


	Gym spaces:






	Space

	Action

	Observation





	Discrete

	✔️

	✔️



	Box

	✔️

	✔️



	MultiDiscrete

	✔️

	✔️



	MultiBinary

	✔️

	✔️



	Dict

	❌

	✔️








Example

This example is only to demonstrate the use of the library and its functions, and the trained agents may not solve the environments. Optimized hyperparameters can be found in RL Zoo repository [https://github.com/DLR-RM/rl-baselines3-zoo].

Train a A2C agent on CartPole-v1 using 4 environments.

from stable_baselines3 import A2C
from stable_baselines3.common.env_util import make_vec_env

# Parallel environments
vec_env = make_vec_env("CartPole-v1", n_envs=4)

model = A2C("MlpPolicy", vec_env, verbose=1)
model.learn(total_timesteps=25000)
model.save("a2c_cartpole")

del model # remove to demonstrate saving and loading

model = A2C.load("a2c_cartpole")

obs = vec_env.reset()
while True:
    action, _states = model.predict(obs)
    obs, rewards, dones, info = vec_env.step(action)
    vec_env.render("human")






Note

A2C is meant to be run primarily on the CPU, especially when you are not using a CNN. To improve CPU utilization, try turning off the GPU and using SubprocVecEnv instead of the default DummyVecEnv:

from stable_baselines3 import A2C
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.vec_env import SubprocVecEnv

if __name__=="__main__":
    env = make_vec_env("CartPole-v1", n_envs=8, vec_env_cls=SubprocVecEnv)
    model = A2C("MlpPolicy", env, device="cpu")
    model.learn(total_timesteps=25_000)





For more information, see Vectorized Environments, Issue #1245 [https://github.com/DLR-RM/stable-baselines3/issues/1245] or the Multiprocessing notebook [https://colab.research.google.com/github/Stable-Baselines-Team/rl-colab-notebooks/blob/sb3/multiprocessing_rl.ipynb].





Results


Atari Games

The complete learning curves are available in the associated PR #110 [https://github.com/DLR-RM/stable-baselines3/pull/110].



PyBullet Environments

Results on the PyBullet benchmark (2M steps) using 6 seeds.
The complete learning curves are available in the associated issue #48 [https://github.com/DLR-RM/stable-baselines3/issues/48].


Note

Hyperparameters from the gSDE paper [https://arxiv.org/abs/2005.05719] were used (as they are tuned for PyBullet envs).



Gaussian means that the unstructured Gaussian noise is used for exploration,
gSDE (generalized State-Dependent Exploration) is used otherwise.



	Environments

	A2C

	A2C

	PPO

	PPO





	
	Gaussian

	gSDE

	Gaussian

	gSDE



	HalfCheetah

	2003 +/- 54

	2032 +/- 122

	1976 +/- 479

	2826 +/- 45



	Ant

	2286 +/- 72

	2443 +/- 89

	2364 +/- 120

	2782 +/- 76



	Hopper

	1627 +/- 158

	1561 +/- 220

	1567 +/- 339

	2512 +/- 21



	Walker2D

	577 +/- 65

	839 +/- 56

	1230 +/- 147

	2019 +/- 64








How to replicate the results?

Clone the rl-zoo repo [https://github.com/DLR-RM/rl-baselines3-zoo]:

git clone https://github.com/DLR-RM/rl-baselines3-zoo
cd rl-baselines3-zoo/





Run the benchmark (replace $ENV_ID by the envs mentioned above):

python train.py --algo a2c --env $ENV_ID --eval-episodes 10 --eval-freq 10000





Plot the results (here for PyBullet envs only):

python scripts/all_plots.py -a a2c -e HalfCheetah Ant Hopper Walker2D -f logs/ -o logs/a2c_results
python scripts/plot_from_file.py -i logs/a2c_results.pkl -latex -l A2C








Parameters


	
class stable_baselines3.a2c.A2C(policy, env, learning_rate=0.0007, n_steps=5, gamma=0.99, gae_lambda=1.0, ent_coef=0.0, vf_coef=0.5, max_grad_norm=0.5, rms_prop_eps=1e-05, use_rms_prop=True, use_sde=False, sde_sample_freq=-1, normalize_advantage=False, stats_window_size=100, tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None, device='auto', _init_setup_model=True)

	Advantage Actor Critic (A2C)

Paper: https://arxiv.org/abs/1602.01783
Code: This implementation borrows code from https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and
and Stable Baselines (https://github.com/hill-a/stable-baselines)

Introduction to A2C: https://hackernoon.com/intuitive-rl-intro-to-advantage-actor-critic-a2c-4ff545978752


	Parameters:

	
	policy (Union[str, Type[ActorCriticPolicy]]) – The policy model to use (MlpPolicy, CnnPolicy, …)


	env (Union[Env, VecEnv, str]) – The environment to learn from (if registered in Gym, can be str)


	learning_rate (Union[float, Callable[[float], float]]) – The learning rate, it can be a function
of the current progress remaining (from 1 to 0)


	n_steps (int) – The number of steps to run for each environment per update
(i.e. batch size is n_steps * n_env where n_env is number of environment copies running in parallel)


	gamma (float) – Discount factor


	gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage Estimator.
Equivalent to classic advantage when set to 1.


	ent_coef (float) – Entropy coefficient for the loss calculation


	vf_coef (float) – Value function coefficient for the loss calculation


	max_grad_norm (float) – The maximum value for the gradient clipping


	rms_prop_eps (float) – RMSProp epsilon. It stabilizes square root computation in denominator
of RMSProp update


	use_rms_prop (bool) – Whether to use RMSprop (default) or Adam as optimizer


	use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)


	sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)


	normalize_advantage (bool) – Whether to normalize or not the advantage


	stats_window_size (int) – Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over


	tensorboard_log (Optional[str]) – the log location for tensorboard (if None, no logging)


	policy_kwargs (Optional[Dict[str, Any]]) – additional arguments to be passed to the policy on creation


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages


	seed (Optional[int]) – Seed for the pseudo random generators


	device (Union[device, str]) – Device (cpu, cuda, …) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.


	_init_setup_model (bool) – Whether or not to build the network at the creation of the instance









	
collect_rollouts(env, callback, rollout_buffer, n_rollout_steps)

	Collect experiences using the current policy and fill a RolloutBuffer.
The term rollout here refers to the model-free notion and should not
be used with the concept of rollout used in model-based RL or planning.


	Parameters:

	
	env (VecEnv) – The training environment


	callback (BaseCallback) – Callback that will be called at each step
(and at the beginning and end of the rollout)


	rollout_buffer (RolloutBuffer) – Buffer to fill with rollouts


	n_rollout_steps (int) – Number of experiences to collect per environment






	Return type:

	bool



	Returns:

	True if function returned with at least n_rollout_steps
collected, False if callback terminated rollout prematurely.










	
get_env()

	Returns the current environment (can be None if not defined).


	Return type:

	Optional[VecEnv]



	Returns:

	The current environment










	
get_parameters()

	Return the parameters of the agent. This includes parameters from different networks, e.g.
critics (value functions) and policies (pi functions).


	Return type:

	Dict[str, Dict]



	Returns:

	Mapping of from names of the objects to PyTorch state-dicts.










	
get_vec_normalize_env()

	Return the VecNormalize wrapper of the training env
if it exists.


	Return type:

	Optional[VecNormalize]



	Returns:

	The VecNormalize env.










	
learn(total_timesteps, callback=None, log_interval=100, tb_log_name='A2C', reset_num_timesteps=True, progress_bar=False)

	Return a trained model.


	Parameters:

	
	total_timesteps (int) – The total number of samples (env steps) to train on


	callback (Union[None, Callable, List[BaseCallback], BaseCallback]) – callback(s) called at every step with state of the algorithm.


	log_interval (int) – The number of episodes before logging.


	tb_log_name (str) – the name of the run for TensorBoard logging


	reset_num_timesteps (bool) – whether or not to reset the current timestep number (used in logging)


	progress_bar (bool) – Display a progress bar using tqdm and rich.






	Return type:

	TypeVar(SelfA2C, bound= A2C)



	Returns:

	the trained model










	
classmethod load(path, env=None, device='auto', custom_objects=None, print_system_info=False, force_reset=True, **kwargs)

	Load the model from a zip-file.
Warning: load re-creates the model from scratch, it does not update it in-place!
For an in-place load use set_parameters instead.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file (or a file-like) where to
load the agent from


	env (Union[Env, VecEnv, None]) – the new environment to run the loaded model on
(can be None if you only need prediction from a trained model) has priority over any saved environment


	device (Union[device, str]) – Device on which the code should run.


	custom_objects (Optional[Dict[str, Any]]) – Dictionary of objects to replace
upon loading. If a variable is present in this dictionary as a
key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in
keras.models.load_model. Useful when you have an object in
file that can not be deserialized.


	print_system_info (bool) – Whether to print system info from the saved model
and the current system info (useful to debug loading issues)


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See https://github.com/DLR-RM/stable-baselines3/issues/597


	kwargs – extra arguments to change the model when loading






	Return type:

	TypeVar(SelfBaseAlgorithm, bound= BaseAlgorithm)



	Returns:

	new model instance with loaded parameters










	
property logger: Logger

	Getter for the logger object.






	
predict(observation, state=None, episode_start=None, deterministic=False)

	Get the policy action from an observation (and optional hidden state).
Includes sugar-coating to handle different observations (e.g. normalizing images).


	Parameters:

	
	observation (Union[ndarray, Dict[str, ndarray]]) – the input observation


	state (Optional[Tuple[ndarray, ...]]) – The last hidden states (can be None, used in recurrent policies)


	episode_start (Optional[ndarray]) – The last masks (can be None, used in recurrent policies)
this correspond to beginning of episodes,
where the hidden states of the RNN must be reset.


	deterministic (bool) – Whether or not to return deterministic actions.






	Return type:

	Tuple[ndarray, Optional[Tuple[ndarray, ...]]]



	Returns:

	the model’s action and the next hidden state
(used in recurrent policies)










	
save(path, exclude=None, include=None)

	Save all the attributes of the object and the model parameters in a zip-file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file where the rl agent should be saved


	exclude (Optional[Iterable[str]]) – name of parameters that should be excluded in addition to the default ones


	include (Optional[Iterable[str]]) – name of parameters that might be excluded but should be included anyway






	Return type:

	None










	
set_env(env, force_reset=True)

	Checks the validity of the environment, and if it is coherent, set it as the current environment.
Furthermore wrap any non vectorized env into a vectorized
checked parameters:
- observation_space
- action_space


	Parameters:

	
	env (Union[Env, VecEnv]) – The environment for learning a policy


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See issue https://github.com/DLR-RM/stable-baselines3/issues/597






	Return type:

	None










	
set_logger(logger)

	Setter for for logger object.
:rtype: None


Warning

When passing a custom logger object,
this will overwrite tensorboard_log and verbose settings
passed to the constructor.








	
set_parameters(load_path_or_dict, exact_match=True, device='auto')

	Load parameters from a given zip-file or a nested dictionary containing parameters for
different modules (see get_parameters).


	Parameters:

	
	load_path_or_iter – Location of the saved data (path or file-like, see save), or a nested
dictionary containing nn.Module parameters used by the policy. The dictionary maps
object names to a state-dictionary returned by torch.nn.Module.state_dict().


	exact_match (bool) – If True, the given parameters should include parameters for each
module and each of their parameters, otherwise raises an Exception. If set to False, this
can be used to update only specific parameters.


	device (Union[device, str]) – Device on which the code should run.






	Return type:

	None










	
set_random_seed(seed=None)

	Set the seed of the pseudo-random generators
(python, numpy, pytorch, gym, action_space)


	Parameters:

	seed (Optional[int]) – 



	Return type:

	None










	
train()

	Update policy using the currently gathered
rollout buffer (one gradient step over whole data).


	Return type:

	None















A2C Policies


	
stable_baselines3.a2c.MlpPolicy

	alias of ActorCriticPolicy






	
class stable_baselines3.common.policies.ActorCriticPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.Tanh'>, ortho_init=True, use_sde=False, log_std_init=0.0, full_std=True, use_expln=False, squash_output=False, features_extractor_class=<class 'stable_baselines3.common.torch_layers.FlattenExtractor'>, features_extractor_kwargs=None, share_features_extractor=True, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None)

	Policy class for actor-critic algorithms (has both policy and value prediction).
Used by A2C, PPO and the likes.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Space) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	ortho_init (bool) – Whether to use or not orthogonal initialization


	use_sde (bool) – Whether to use State Dependent Exploration or not


	log_std_init (float) – Initial value for the log standard deviation


	full_std (bool) – Whether to use (n_features x n_actions) parameters
for the std instead of only (n_features,) when using gSDE


	use_expln (bool) – Use expln() function instead of exp() to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	squash_output (bool) – Whether to squash the output using a tanh function,
this allows to ensure boundaries when using gSDE.


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	share_features_extractor (bool) – If True, the features extractor is shared between the policy and value networks.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer









	
evaluate_actions(obs, actions)

	Evaluate actions according to the current policy,
given the observations.


	Parameters:

	
	obs (Tensor) – Observation


	actions (Tensor) – Actions






	Return type:

	Tuple[Tensor, Tensor, Optional[Tensor]]



	Returns:

	estimated value, log likelihood of taking those actions
and entropy of the action distribution.










	
extract_features(obs)

	Preprocess the observation if needed and extract features.


	Parameters:

	obs (Tensor) – Observation



	Return type:

	Union[Tensor, Tuple[Tensor, Tensor]]



	Returns:

	the output of the features extractor(s)










	
forward(obs, deterministic=False)

	Forward pass in all the networks (actor and critic)


	Parameters:

	
	obs (Tensor) – Observation


	deterministic (bool) – Whether to sample or use deterministic actions






	Return type:

	Tuple[Tensor, Tensor, Tensor]



	Returns:

	action, value and log probability of the action










	
get_distribution(obs)

	Get the current policy distribution given the observations.


	Parameters:

	obs (Tensor) – 



	Return type:

	Distribution



	Returns:

	the action distribution.










	
predict_values(obs)

	Get the estimated values according to the current policy given the observations.


	Parameters:

	obs (Tensor) – Observation



	Return type:

	Tensor



	Returns:

	the estimated values.










	
reset_noise(n_envs=1)

	Sample new weights for the exploration matrix.


	Parameters:

	n_envs (int) – 



	Return type:

	None














	
stable_baselines3.a2c.CnnPolicy

	alias of ActorCriticCnnPolicy






	
class stable_baselines3.common.policies.ActorCriticCnnPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.Tanh'>, ortho_init=True, use_sde=False, log_std_init=0.0, full_std=True, use_expln=False, squash_output=False, features_extractor_class=<class 'stable_baselines3.common.torch_layers.NatureCNN'>, features_extractor_kwargs=None, share_features_extractor=True, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None)

	CNN policy class for actor-critic algorithms (has both policy and value prediction).
Used by A2C, PPO and the likes.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Space) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	ortho_init (bool) – Whether to use or not orthogonal initialization


	use_sde (bool) – Whether to use State Dependent Exploration or not


	log_std_init (float) – Initial value for the log standard deviation


	full_std (bool) – Whether to use (n_features x n_actions) parameters
for the std instead of only (n_features,) when using gSDE


	use_expln (bool) – Use expln() function instead of exp() to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	squash_output (bool) – Whether to squash the output using a tanh function,
this allows to ensure boundaries when using gSDE.


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	share_features_extractor (bool) – If True, the features extractor is shared between the policy and value networks.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer













	
stable_baselines3.a2c.MultiInputPolicy

	alias of MultiInputActorCriticPolicy






	
class stable_baselines3.common.policies.MultiInputActorCriticPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.Tanh'>, ortho_init=True, use_sde=False, log_std_init=0.0, full_std=True, use_expln=False, squash_output=False, features_extractor_class=<class 'stable_baselines3.common.torch_layers.CombinedExtractor'>, features_extractor_kwargs=None, share_features_extractor=True, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None)

	MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).
Used by A2C, PPO and the likes.


	Parameters:

	
	observation_space (Dict) – Observation space (Tuple)


	action_space (Space) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	ortho_init (bool) – Whether to use or not orthogonal initialization


	use_sde (bool) – Whether to use State Dependent Exploration or not


	log_std_init (float) – Initial value for the log standard deviation


	full_std (bool) – Whether to use (n_features x n_actions) parameters
for the std instead of only (n_features,) when using gSDE


	use_expln (bool) – Use expln() function instead of exp() to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	squash_output (bool) – Whether to squash the output using a tanh function,
this allows to ensure boundaries when using gSDE.


	features_extractor_class (Type[BaseFeaturesExtractor]) – Uses the CombinedExtractor


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	share_features_extractor (bool) – If True, the features extractor is shared between the policy and value networks.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer
















            

          

      

      

    

  

    
      
          
            
  
DDPG

Deep Deterministic Policy Gradient (DDPG) [https://spinningup.openai.com/en/latest/algorithms/ddpg.html] combines the
trick for DQN with the deterministic policy gradient, to obtain an algorithm for continuous actions.


Note

As DDPG can be seen as a special case of its successor TD3,
they share the same policies and same implementation.



Available Policies



	MlpPolicy

	alias of TD3Policy



	CnnPolicy

	Policy class (with both actor and critic) for TD3.



	MultiInputPolicy

	Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.







Notes


	Deterministic Policy Gradient: http://proceedings.mlr.press/v32/silver14.pdf


	DDPG Paper: https://arxiv.org/abs/1509.02971


	OpenAI Spinning Guide for DDPG: https://spinningup.openai.com/en/latest/algorithms/ddpg.html






Can I use?


	Recurrent policies: ❌


	Multi processing: ✔️


	Gym spaces:






	Space

	Action

	Observation





	Discrete

	❌

	✔️



	Box

	✔️

	✔️



	MultiDiscrete

	❌

	✔️



	MultiBinary

	❌

	✔️



	Dict

	❌

	✔️








Example

This example is only to demonstrate the use of the library and its functions, and the trained agents may not solve the environments. Optimized hyperparameters can be found in RL Zoo repository [https://github.com/DLR-RM/rl-baselines3-zoo].

import gymnasium as gym
import numpy as np

from stable_baselines3 import DDPG
from stable_baselines3.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise

env = gym.make("Pendulum-v1", render_mode="rgb_array")

# The noise objects for DDPG
n_actions = env.action_space.shape[-1]
action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))

model = DDPG("MlpPolicy", env, action_noise=action_noise, verbose=1)
model.learn(total_timesteps=10000, log_interval=10)
model.save("ddpg_pendulum")
vec_env = model.get_env()

del model # remove to demonstrate saving and loading

model = DDPG.load("ddpg_pendulum")

obs = vec_env.reset()
while True:
    action, _states = model.predict(obs)
    obs, rewards, dones, info = vec_env.step(action)
    env.render("human")







Results


PyBullet Environments

Results on the PyBullet benchmark (1M steps) using 6 seeds.
The complete learning curves are available in the associated issue #48 [https://github.com/DLR-RM/stable-baselines3/issues/48].


Note

Hyperparameters of TD3 from the gSDE paper [https://arxiv.org/abs/2005.05719] were used for DDPG.



Gaussian means that the unstructured Gaussian noise is used for exploration,
gSDE (generalized State-Dependent Exploration) is used otherwise.



	Environments

	DDPG

	TD3

	SAC





	
	Gaussian

	Gaussian

	gSDE



	HalfCheetah

	2272 +/- 69

	2774 +/- 35

	2984 +/- 202



	Ant

	1651 +/- 407

	3305 +/- 43

	3102 +/- 37



	Hopper

	1201 +/- 211

	2429 +/- 126

	2262 +/- 1



	Walker2D

	882 +/- 186

	2063 +/- 185

	2136 +/- 67








How to replicate the results?

Clone the rl-zoo repo [https://github.com/DLR-RM/rl-baselines3-zoo]:

git clone https://github.com/DLR-RM/rl-baselines3-zoo
cd rl-baselines3-zoo/





Run the benchmark (replace $ENV_ID by the envs mentioned above):

python train.py --algo ddpg --env $ENV_ID --eval-episodes 10 --eval-freq 10000





Plot the results:

python scripts/all_plots.py -a ddpg -e HalfCheetah Ant Hopper Walker2D -f logs/ -o logs/ddpg_results
python scripts/plot_from_file.py -i logs/ddpg_results.pkl -latex -l DDPG








Parameters


	
class stable_baselines3.ddpg.DDPG(policy, env, learning_rate=0.001, buffer_size=1000000, learning_starts=100, batch_size=100, tau=0.005, gamma=0.99, train_freq=(1, 'episode'), gradient_steps=-1, action_noise=None, replay_buffer_class=None, replay_buffer_kwargs=None, optimize_memory_usage=False, tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None, device='auto', _init_setup_model=True)

	Deep Deterministic Policy Gradient (DDPG).

Deterministic Policy Gradient: http://proceedings.mlr.press/v32/silver14.pdf
DDPG Paper: https://arxiv.org/abs/1509.02971
Introduction to DDPG: https://spinningup.openai.com/en/latest/algorithms/ddpg.html

Note: we treat DDPG as a special case of its successor TD3.


	Parameters:

	
	policy (Union[str, Type[TD3Policy]]) – The policy model to use (MlpPolicy, CnnPolicy, …)


	env (Union[Env, VecEnv, str]) – The environment to learn from (if registered in Gym, can be str)


	learning_rate (Union[float, Callable[[float], float]]) – learning rate for adam optimizer,
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
it can be a function of the current progress remaining (from 1 to 0)


	buffer_size (int) – size of the replay buffer


	learning_starts (int) – how many steps of the model to collect transitions for before learning starts


	batch_size (int) – Minibatch size for each gradient update


	tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1)


	gamma (float) – the discount factor


	train_freq (Union[int, Tuple[int, str]]) – Update the model every train_freq steps. Alternatively pass a tuple of frequency and unit
like (5, "step") or (2, "episode").


	gradient_steps (int) – How many gradient steps to do after each rollout (see train_freq)
Set to -1 means to do as many gradient steps as steps done in the environment
during the rollout.


	action_noise (Optional[ActionNoise]) – the action noise type (None by default), this can help
for hard exploration problem. Cf common.noise for the different action noise type.


	replay_buffer_class (Optional[Type[ReplayBuffer]]) – Replay buffer class to use (for instance HerReplayBuffer).
If None, it will be automatically selected.


	replay_buffer_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the replay buffer on creation.


	optimize_memory_usage (bool) – Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195


	policy_kwargs (Optional[Dict[str, Any]]) – additional arguments to be passed to the policy on creation


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages


	seed (Optional[int]) – Seed for the pseudo random generators


	device (Union[device, str]) – Device (cpu, cuda, …) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.


	_init_setup_model (bool) – Whether or not to build the network at the creation of the instance









	
collect_rollouts(env, callback, train_freq, replay_buffer, action_noise=None, learning_starts=0, log_interval=None)

	Collect experiences and store them into a ReplayBuffer.


	Parameters:

	
	env (VecEnv) – The training environment


	callback (BaseCallback) – Callback that will be called at each step
(and at the beginning and end of the rollout)


	train_freq (TrainFreq) – How much experience to collect
by doing rollouts of current policy.
Either TrainFreq(<n>, TrainFrequencyUnit.STEP)
or TrainFreq(<n>, TrainFrequencyUnit.EPISODE)
with <n> being an integer greater than 0.


	action_noise (Optional[ActionNoise]) – Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.


	learning_starts (int) – Number of steps before learning for the warm-up phase.


	replay_buffer (ReplayBuffer) – 


	log_interval (Optional[int]) – Log data every log_interval episodes






	Return type:

	RolloutReturn



	Returns:

	










	
get_env()

	Returns the current environment (can be None if not defined).


	Return type:

	Optional[VecEnv]



	Returns:

	The current environment










	
get_parameters()

	Return the parameters of the agent. This includes parameters from different networks, e.g.
critics (value functions) and policies (pi functions).


	Return type:

	Dict[str, Dict]



	Returns:

	Mapping of from names of the objects to PyTorch state-dicts.










	
get_vec_normalize_env()

	Return the VecNormalize wrapper of the training env
if it exists.


	Return type:

	Optional[VecNormalize]



	Returns:

	The VecNormalize env.










	
learn(total_timesteps, callback=None, log_interval=4, tb_log_name='DDPG', reset_num_timesteps=True, progress_bar=False)

	Return a trained model.


	Parameters:

	
	total_timesteps (int) – The total number of samples (env steps) to train on


	callback (Union[None, Callable, List[BaseCallback], BaseCallback]) – callback(s) called at every step with state of the algorithm.


	log_interval (int) – The number of episodes before logging.


	tb_log_name (str) – the name of the run for TensorBoard logging


	reset_num_timesteps (bool) – whether or not to reset the current timestep number (used in logging)


	progress_bar (bool) – Display a progress bar using tqdm and rich.






	Return type:

	TypeVar(SelfDDPG, bound= DDPG)



	Returns:

	the trained model










	
classmethod load(path, env=None, device='auto', custom_objects=None, print_system_info=False, force_reset=True, **kwargs)

	Load the model from a zip-file.
Warning: load re-creates the model from scratch, it does not update it in-place!
For an in-place load use set_parameters instead.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file (or a file-like) where to
load the agent from


	env (Union[Env, VecEnv, None]) – the new environment to run the loaded model on
(can be None if you only need prediction from a trained model) has priority over any saved environment


	device (Union[device, str]) – Device on which the code should run.


	custom_objects (Optional[Dict[str, Any]]) – Dictionary of objects to replace
upon loading. If a variable is present in this dictionary as a
key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in
keras.models.load_model. Useful when you have an object in
file that can not be deserialized.


	print_system_info (bool) – Whether to print system info from the saved model
and the current system info (useful to debug loading issues)


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See https://github.com/DLR-RM/stable-baselines3/issues/597


	kwargs – extra arguments to change the model when loading






	Return type:

	TypeVar(SelfBaseAlgorithm, bound= BaseAlgorithm)



	Returns:

	new model instance with loaded parameters










	
load_replay_buffer(path, truncate_last_traj=True)

	Load a replay buffer from a pickle file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – Path to the pickled replay buffer.


	truncate_last_traj (bool) – When using HerReplayBuffer with online sampling:
If set to True, we assume that the last trajectory in the replay buffer was finished
(and truncate it).
If set to False, we assume that we continue the same trajectory (same episode).






	Return type:

	None










	
property logger: Logger

	Getter for the logger object.






	
predict(observation, state=None, episode_start=None, deterministic=False)

	Get the policy action from an observation (and optional hidden state).
Includes sugar-coating to handle different observations (e.g. normalizing images).


	Parameters:

	
	observation (Union[ndarray, Dict[str, ndarray]]) – the input observation


	state (Optional[Tuple[ndarray, ...]]) – The last hidden states (can be None, used in recurrent policies)


	episode_start (Optional[ndarray]) – The last masks (can be None, used in recurrent policies)
this correspond to beginning of episodes,
where the hidden states of the RNN must be reset.


	deterministic (bool) – Whether or not to return deterministic actions.






	Return type:

	Tuple[ndarray, Optional[Tuple[ndarray, ...]]]



	Returns:

	the model’s action and the next hidden state
(used in recurrent policies)










	
save(path, exclude=None, include=None)

	Save all the attributes of the object and the model parameters in a zip-file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file where the rl agent should be saved


	exclude (Optional[Iterable[str]]) – name of parameters that should be excluded in addition to the default ones


	include (Optional[Iterable[str]]) – name of parameters that might be excluded but should be included anyway






	Return type:

	None










	
save_replay_buffer(path)

	Save the replay buffer as a pickle file.


	Parameters:

	path (Union[str, Path, BufferedIOBase]) – Path to the file where the replay buffer should be saved.
if path is a str or pathlib.Path, the path is automatically created if necessary.



	Return type:

	None










	
set_env(env, force_reset=True)

	Checks the validity of the environment, and if it is coherent, set it as the current environment.
Furthermore wrap any non vectorized env into a vectorized
checked parameters:
- observation_space
- action_space


	Parameters:

	
	env (Union[Env, VecEnv]) – The environment for learning a policy


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See issue https://github.com/DLR-RM/stable-baselines3/issues/597






	Return type:

	None










	
set_logger(logger)

	Setter for for logger object.
:rtype: None


Warning

When passing a custom logger object,
this will overwrite tensorboard_log and verbose settings
passed to the constructor.








	
set_parameters(load_path_or_dict, exact_match=True, device='auto')

	Load parameters from a given zip-file or a nested dictionary containing parameters for
different modules (see get_parameters).


	Parameters:

	
	load_path_or_iter – Location of the saved data (path or file-like, see save), or a nested
dictionary containing nn.Module parameters used by the policy. The dictionary maps
object names to a state-dictionary returned by torch.nn.Module.state_dict().


	exact_match (bool) – If True, the given parameters should include parameters for each
module and each of their parameters, otherwise raises an Exception. If set to False, this
can be used to update only specific parameters.


	device (Union[device, str]) – Device on which the code should run.






	Return type:

	None










	
set_random_seed(seed=None)

	Set the seed of the pseudo-random generators
(python, numpy, pytorch, gym, action_space)


	Parameters:

	seed (Optional[int]) – 



	Return type:

	None










	
train(gradient_steps, batch_size=100)

	Sample the replay buffer and do the updates
(gradient descent and update target networks)


	Return type:

	None















DDPG Policies


	
stable_baselines3.ddpg.MlpPolicy

	alias of TD3Policy






	
class stable_baselines3.td3.policies.TD3Policy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, features_extractor_class=<class 'stable_baselines3.common.torch_layers.FlattenExtractor'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None, n_critics=2, share_features_extractor=False)

	Policy class (with both actor and critic) for TD3.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Box) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer


	n_critics (int) – Number of critic networks to create.


	share_features_extractor (bool) – Whether to share or not the features extractor
between the actor and the critic (this saves computation time)









	
forward(observation, deterministic=False)

	Defines the computation performed at every call.

Should be overridden by all subclasses.
:rtype: Tensor


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
set_training_mode(mode)

	Put the policy in either training or evaluation mode.

This affects certain modules, such as batch normalisation and dropout.


	Parameters:

	mode (bool) – if true, set to training mode, else set to evaluation mode



	Return type:

	None














	
class stable_baselines3.ddpg.CnnPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, features_extractor_class=<class 'stable_baselines3.common.torch_layers.NatureCNN'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None, n_critics=2, share_features_extractor=False)

	Policy class (with both actor and critic) for TD3.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Box) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer


	n_critics (int) – Number of critic networks to create.


	share_features_extractor (bool) – Whether to share or not the features extractor
between the actor and the critic (this saves computation time)













	
class stable_baselines3.ddpg.MultiInputPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, features_extractor_class=<class 'stable_baselines3.common.torch_layers.CombinedExtractor'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None, n_critics=2, share_features_extractor=False)

	Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.


	Parameters:

	
	observation_space (Dict) – Observation space


	action_space (Box) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer


	n_critics (int) – Number of critic networks to create.


	share_features_extractor (bool) – Whether to share or not the features extractor
between the actor and the critic (this saves computation time)
















            

          

      

      

    

  

    
      
          
            
  
DQN

Deep Q Network (DQN) [https://arxiv.org/abs/1312.5602] builds on Fitted Q-Iteration (FQI) [http://ml.informatik.uni-freiburg.de/former/_media/publications/rieecml05.pdf]
and make use of different tricks to stabilize the learning with neural networks: it uses a replay buffer, a target network and gradient clipping.

Available Policies



	MlpPolicy

	alias of DQNPolicy



	CnnPolicy

	Policy class for DQN when using images as input.



	MultiInputPolicy

	Policy class for DQN when using dict observations as input.







Notes


	Original paper: https://arxiv.org/abs/1312.5602


	Further reference: https://www.nature.com/articles/nature14236





Note

This implementation provides only vanilla Deep Q-Learning and has no extensions such as Double-DQN, Dueling-DQN and Prioritized Experience Replay.





Can I use?


	Recurrent policies: ❌


	Multi processing: ✔️


	Gym spaces:






	Space

	Action

	Observation





	Discrete

	✔️

	✔️



	Box

	❌

	✔️



	MultiDiscrete

	❌

	✔️



	MultiBinary

	❌

	✔️



	Dict

	❌

	✔️️








Example

This example is only to demonstrate the use of the library and its functions, and the trained agents may not solve the environments. Optimized hyperparameters can be found in RL Zoo repository [https://github.com/DLR-RM/rl-baselines3-zoo].

import gymnasium as gym

from stable_baselines3 import DQN

env = gym.make("CartPole-v1", render_mode="human")

model = DQN("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=10000, log_interval=4)
model.save("dqn_cartpole")

del model # remove to demonstrate saving and loading

model = DQN.load("dqn_cartpole")

obs, info = env.reset()
while True:
    action, _states = model.predict(obs, deterministic=True)
    obs, reward, terminated, truncated, info = env.step(action)
    if terminated or truncated:
        obs, info = env.reset()







Results


Atari Games

The complete learning curves are available in the associated PR #110 [https://github.com/DLR-RM/stable-baselines3/pull/110].



How to replicate the results?

Clone the rl-zoo repo [https://github.com/DLR-RM/rl-baselines3-zoo]:

git clone https://github.com/DLR-RM/rl-baselines3-zoo
cd rl-baselines3-zoo/





Run the benchmark (replace $ENV_ID by the env id, for instance BreakoutNoFrameskip-v4):

python train.py --algo dqn --env $ENV_ID --eval-episodes 10 --eval-freq 10000





Plot the results:

python scripts/all_plots.py -a dqn -e Pong Breakout -f logs/ -o logs/dqn_results
python scripts/plot_from_file.py -i logs/dqn_results.pkl -latex -l DQN








Parameters


	
class stable_baselines3.dqn.DQN(policy, env, learning_rate=0.0001, buffer_size=1000000, learning_starts=50000, batch_size=32, tau=1.0, gamma=0.99, train_freq=4, gradient_steps=1, replay_buffer_class=None, replay_buffer_kwargs=None, optimize_memory_usage=False, target_update_interval=10000, exploration_fraction=0.1, exploration_initial_eps=1.0, exploration_final_eps=0.05, max_grad_norm=10, stats_window_size=100, tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None, device='auto', _init_setup_model=True)

	Deep Q-Network (DQN)

Paper: https://arxiv.org/abs/1312.5602, https://www.nature.com/articles/nature14236
Default hyperparameters are taken from the Nature paper,
except for the optimizer and learning rate that were taken from Stable Baselines defaults.


	Parameters:

	
	policy (Union[str, Type[DQNPolicy]]) – The policy model to use (MlpPolicy, CnnPolicy, …)


	env (Union[Env, VecEnv, str]) – The environment to learn from (if registered in Gym, can be str)


	learning_rate (Union[float, Callable[[float], float]]) – The learning rate, it can be a function
of the current progress remaining (from 1 to 0)


	buffer_size (int) – size of the replay buffer


	learning_starts (int) – how many steps of the model to collect transitions for before learning starts


	batch_size (int) – Minibatch size for each gradient update


	tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1) default 1 for hard update


	gamma (float) – the discount factor


	train_freq (Union[int, Tuple[int, str]]) – Update the model every train_freq steps. Alternatively pass a tuple of frequency and unit
like (5, "step") or (2, "episode").


	gradient_steps (int) – How many gradient steps to do after each rollout (see train_freq)
Set to -1 means to do as many gradient steps as steps done in the environment
during the rollout.


	replay_buffer_class (Optional[Type[ReplayBuffer]]) – Replay buffer class to use (for instance HerReplayBuffer).
If None, it will be automatically selected.


	replay_buffer_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the replay buffer on creation.


	optimize_memory_usage (bool) – Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195


	target_update_interval (int) – update the target network every target_update_interval
environment steps.


	exploration_fraction (float) – fraction of entire training period over which the exploration rate is reduced


	exploration_initial_eps (float) – initial value of random action probability


	exploration_final_eps (float) – final value of random action probability


	max_grad_norm (float) – The maximum value for the gradient clipping


	stats_window_size (int) – Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over


	tensorboard_log (Optional[str]) – the log location for tensorboard (if None, no logging)


	policy_kwargs (Optional[Dict[str, Any]]) – additional arguments to be passed to the policy on creation


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages


	seed (Optional[int]) – Seed for the pseudo random generators


	device (Union[device, str]) – Device (cpu, cuda, …) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.


	_init_setup_model (bool) – Whether or not to build the network at the creation of the instance









	
collect_rollouts(env, callback, train_freq, replay_buffer, action_noise=None, learning_starts=0, log_interval=None)

	Collect experiences and store them into a ReplayBuffer.


	Parameters:

	
	env (VecEnv) – The training environment


	callback (BaseCallback) – Callback that will be called at each step
(and at the beginning and end of the rollout)


	train_freq (TrainFreq) – How much experience to collect
by doing rollouts of current policy.
Either TrainFreq(<n>, TrainFrequencyUnit.STEP)
or TrainFreq(<n>, TrainFrequencyUnit.EPISODE)
with <n> being an integer greater than 0.


	action_noise (Optional[ActionNoise]) – Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.


	learning_starts (int) – Number of steps before learning for the warm-up phase.


	replay_buffer (ReplayBuffer) – 


	log_interval (Optional[int]) – Log data every log_interval episodes






	Return type:

	RolloutReturn



	Returns:

	










	
get_env()

	Returns the current environment (can be None if not defined).


	Return type:

	Optional[VecEnv]



	Returns:

	The current environment










	
get_parameters()

	Return the parameters of the agent. This includes parameters from different networks, e.g.
critics (value functions) and policies (pi functions).


	Return type:

	Dict[str, Dict]



	Returns:

	Mapping of from names of the objects to PyTorch state-dicts.










	
get_vec_normalize_env()

	Return the VecNormalize wrapper of the training env
if it exists.


	Return type:

	Optional[VecNormalize]



	Returns:

	The VecNormalize env.










	
learn(total_timesteps, callback=None, log_interval=4, tb_log_name='DQN', reset_num_timesteps=True, progress_bar=False)

	Return a trained model.


	Parameters:

	
	total_timesteps (int) – The total number of samples (env steps) to train on


	callback (Union[None, Callable, List[BaseCallback], BaseCallback]) – callback(s) called at every step with state of the algorithm.


	log_interval (int) – The number of episodes before logging.


	tb_log_name (str) – the name of the run for TensorBoard logging


	reset_num_timesteps (bool) – whether or not to reset the current timestep number (used in logging)


	progress_bar (bool) – Display a progress bar using tqdm and rich.






	Return type:

	TypeVar(SelfDQN, bound= DQN)



	Returns:

	the trained model










	
classmethod load(path, env=None, device='auto', custom_objects=None, print_system_info=False, force_reset=True, **kwargs)

	Load the model from a zip-file.
Warning: load re-creates the model from scratch, it does not update it in-place!
For an in-place load use set_parameters instead.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file (or a file-like) where to
load the agent from


	env (Union[Env, VecEnv, None]) – the new environment to run the loaded model on
(can be None if you only need prediction from a trained model) has priority over any saved environment


	device (Union[device, str]) – Device on which the code should run.


	custom_objects (Optional[Dict[str, Any]]) – Dictionary of objects to replace
upon loading. If a variable is present in this dictionary as a
key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in
keras.models.load_model. Useful when you have an object in
file that can not be deserialized.


	print_system_info (bool) – Whether to print system info from the saved model
and the current system info (useful to debug loading issues)


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See https://github.com/DLR-RM/stable-baselines3/issues/597


	kwargs – extra arguments to change the model when loading






	Return type:

	TypeVar(SelfBaseAlgorithm, bound= BaseAlgorithm)



	Returns:

	new model instance with loaded parameters










	
load_replay_buffer(path, truncate_last_traj=True)

	Load a replay buffer from a pickle file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – Path to the pickled replay buffer.


	truncate_last_traj (bool) – When using HerReplayBuffer with online sampling:
If set to True, we assume that the last trajectory in the replay buffer was finished
(and truncate it).
If set to False, we assume that we continue the same trajectory (same episode).






	Return type:

	None










	
property logger: Logger

	Getter for the logger object.






	
predict(observation, state=None, episode_start=None, deterministic=False)

	Overrides the base_class predict function to include epsilon-greedy exploration.


	Parameters:

	
	observation (Union[ndarray, Dict[str, ndarray]]) – the input observation


	state (Optional[Tuple[ndarray, ...]]) – The last states (can be None, used in recurrent policies)


	episode_start (Optional[ndarray]) – The last masks (can be None, used in recurrent policies)


	deterministic (bool) – Whether or not to return deterministic actions.






	Return type:

	Tuple[ndarray, Optional[Tuple[ndarray, ...]]]



	Returns:

	the model’s action and the next state
(used in recurrent policies)










	
save(path, exclude=None, include=None)

	Save all the attributes of the object and the model parameters in a zip-file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file where the rl agent should be saved


	exclude (Optional[Iterable[str]]) – name of parameters that should be excluded in addition to the default ones


	include (Optional[Iterable[str]]) – name of parameters that might be excluded but should be included anyway






	Return type:

	None










	
save_replay_buffer(path)

	Save the replay buffer as a pickle file.


	Parameters:

	path (Union[str, Path, BufferedIOBase]) – Path to the file where the replay buffer should be saved.
if path is a str or pathlib.Path, the path is automatically created if necessary.



	Return type:

	None










	
set_env(env, force_reset=True)

	Checks the validity of the environment, and if it is coherent, set it as the current environment.
Furthermore wrap any non vectorized env into a vectorized
checked parameters:
- observation_space
- action_space


	Parameters:

	
	env (Union[Env, VecEnv]) – The environment for learning a policy


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See issue https://github.com/DLR-RM/stable-baselines3/issues/597






	Return type:

	None










	
set_logger(logger)

	Setter for for logger object.
:rtype: None


Warning

When passing a custom logger object,
this will overwrite tensorboard_log and verbose settings
passed to the constructor.








	
set_parameters(load_path_or_dict, exact_match=True, device='auto')

	Load parameters from a given zip-file or a nested dictionary containing parameters for
different modules (see get_parameters).


	Parameters:

	
	load_path_or_iter – Location of the saved data (path or file-like, see save), or a nested
dictionary containing nn.Module parameters used by the policy. The dictionary maps
object names to a state-dictionary returned by torch.nn.Module.state_dict().


	exact_match (bool) – If True, the given parameters should include parameters for each
module and each of their parameters, otherwise raises an Exception. If set to False, this
can be used to update only specific parameters.


	device (Union[device, str]) – Device on which the code should run.






	Return type:

	None










	
set_random_seed(seed=None)

	Set the seed of the pseudo-random generators
(python, numpy, pytorch, gym, action_space)


	Parameters:

	seed (Optional[int]) – 



	Return type:

	None










	
train(gradient_steps, batch_size=100)

	Sample the replay buffer and do the updates
(gradient descent and update target networks)


	Return type:

	None















DQN Policies


	
stable_baselines3.dqn.MlpPolicy

	alias of DQNPolicy






	
class stable_baselines3.dqn.policies.DQNPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, features_extractor_class=<class 'stable_baselines3.common.torch_layers.FlattenExtractor'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None)

	Policy class with Q-Value Net and target net for DQN


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Discrete) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Optional[List[int]]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer









	
forward(obs, deterministic=True)

	Defines the computation performed at every call.

Should be overridden by all subclasses.
:rtype: Tensor


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
set_training_mode(mode)

	Put the policy in either training or evaluation mode.

This affects certain modules, such as batch normalisation and dropout.


	Parameters:

	mode (bool) – if true, set to training mode, else set to evaluation mode



	Return type:

	None














	
class stable_baselines3.dqn.CnnPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, features_extractor_class=<class 'stable_baselines3.common.torch_layers.NatureCNN'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None)

	Policy class for DQN when using images as input.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Discrete) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Optional[List[int]]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer













	
class stable_baselines3.dqn.MultiInputPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, features_extractor_class=<class 'stable_baselines3.common.torch_layers.CombinedExtractor'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None)

	Policy class for DQN when using dict observations as input.


	Parameters:

	
	observation_space (Dict) – Observation space


	action_space (Discrete) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Optional[List[int]]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer
















            

          

      

      

    

  

    
      
          
            
  
HER

Hindsight Experience Replay (HER) [https://arxiv.org/abs/1707.01495]

HER is an algorithm that works with off-policy methods (DQN, SAC, TD3 and DDPG for example).
HER uses the fact that even if a desired goal was not achieved, other goal may have been achieved during a rollout.
It creates “virtual” transitions by relabeling transitions (changing the desired goal) from past episodes.


Warning

Starting from Stable Baselines3 v1.1.0, HER is no longer a separate algorithm
but a replay buffer class HerReplayBuffer that must be passed to an off-policy algorithm
when using MultiInputPolicy (to have Dict observation support).




Warning

HER requires the environment to follow the legacy gym_robotics.GoalEnv interface [https://github.com/Farama-Foundation/Gymnasium-Robotics/blob/a35b1c1fa669428bf640a2c7101e66eb1627ac3a/gym_robotics/core.py#L8]
In short, the gym.Env must have:
- a vectorized implementation of compute_reward()
- a dictionary observation space with three keys: observation, achieved_goal and desired_goal




Warning

Because it needs access to env.compute_reward()
HER must be loaded with the env. If you just want to use the trained policy
without instantiating the environment, we recommend saving the policy only.




Note

Compared to other implementations, the future goal sampling strategy is inclusive:
the current transition can be used when re-sampling.




Notes


	Original paper: https://arxiv.org/abs/1707.01495


	OpenAI paper: Plappert et al. (2018) [https://arxiv.org/abs/1802.09464]


	OpenAI blog post: https://openai.com/blog/ingredients-for-robotics-research/






Can I use?

Please refer to the used model (DQN, QR-DQN, SAC, TQC, TD3, or DDPG) for that section.



Example

This example is only to demonstrate the use of the library and its functions, and the trained agents may not solve the environments. Optimized hyperparameters can be found in RL Zoo repository [https://github.com/DLR-RM/rl-baselines3-zoo].

from stable_baselines3 import HerReplayBuffer, DDPG, DQN, SAC, TD3
from stable_baselines3.her.goal_selection_strategy import GoalSelectionStrategy
from stable_baselines3.common.envs import BitFlippingEnv

model_class = DQN  # works also with SAC, DDPG and TD3
N_BITS = 15

env = BitFlippingEnv(n_bits=N_BITS, continuous=model_class in [DDPG, SAC, TD3], max_steps=N_BITS)

# Available strategies (cf paper): future, final, episode
goal_selection_strategy = "future" # equivalent to GoalSelectionStrategy.FUTURE

# Initialize the model
model = model_class(
    "MultiInputPolicy",
    env,
    replay_buffer_class=HerReplayBuffer,
    # Parameters for HER
    replay_buffer_kwargs=dict(
        n_sampled_goal=4,
        goal_selection_strategy=goal_selection_strategy,
    ),
    verbose=1,
)

# Train the model
model.learn(1000)

model.save("./her_bit_env")
# Because it needs access to `env.compute_reward()`
# HER must be loaded with the env
model = model_class.load("./her_bit_env", env=env)

obs, info = env.reset()
for _ in range(100):
    action, _ = model.predict(obs, deterministic=True)
    obs, reward, terminated, truncated, _ = env.step(action)
    if terminated or truncated:
        obs, info = env.reset()







Results

This implementation was tested on the parking env [https://github.com/eleurent/highway-env]
using 3 seeds.

The complete learning curves are available in the associated PR #120 [https://github.com/DLR-RM/stable-baselines3/pull/120].


How to replicate the results?

Clone the rl-zoo repo [https://github.com/DLR-RM/rl-baselines3-zoo]:

git clone https://github.com/DLR-RM/rl-baselines3-zoo
cd rl-baselines3-zoo/





Run the benchmark:

python train.py --algo tqc --env parking-v0 --eval-episodes 10 --eval-freq 10000





Plot the results:

python scripts/all_plots.py -a tqc -e parking-v0 -f logs/ --no-million








Parameters



HER Replay Buffer


	
class stable_baselines3.her.HerReplayBuffer(buffer_size, observation_space, action_space, env, device='auto', n_envs=1, optimize_memory_usage=False, handle_timeout_termination=True, n_sampled_goal=4, goal_selection_strategy='future', copy_info_dict=False)

	Hindsight Experience Replay (HER) buffer.
Paper: https://arxiv.org/abs/1707.01495

Replay buffer for sampling HER (Hindsight Experience Replay) transitions.


Note

Compared to other implementations, the future goal sampling strategy is inclusive:
the current transition can be used when re-sampling.




	Parameters:

	
	buffer_size (int) – Max number of element in the buffer


	observation_space (Space) – Observation space


	action_space (Space) – Action space


	env (VecEnv) – The training environment


	device (Union[device, str]) – PyTorch device


	n_envs (int) – Number of parallel environments


	optimize_memory_usage (bool) – Enable a memory efficient variant
Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)


	handle_timeout_termination (bool) – Handle timeout termination (due to timelimit)
separately and treat the task as infinite horizon task.
https://github.com/DLR-RM/stable-baselines3/issues/284


	n_sampled_goal (int) – Number of virtual transitions to create per real transition,
by sampling new goals.


	goal_selection_strategy (Union[GoalSelectionStrategy, str]) – Strategy for sampling goals for replay.
One of [‘episode’, ‘final’, ‘future’]


	copy_info_dict (bool) – Whether to copy the info dictionary and pass it to
compute_reward() method.
Please note that the copy may cause a slowdown.
False by default.









	
add(obs, next_obs, action, reward, done, infos)

	Add elements to the buffer.


	Return type:

	None










	
extend(*args, **kwargs)

	Add a new batch of transitions to the buffer


	Return type:

	None










	
reset()

	Reset the buffer.


	Return type:

	None










	
sample(batch_size, env=None)

	Sample elements from the replay buffer.


	Parameters:

	
	batch_size (int) – Number of element to sample


	env (Optional[VecNormalize]) – Associated VecEnv to normalize the observations/rewards when sampling






	Return type:

	DictReplayBufferSamples



	Returns:

	Samples










	
set_env(env)

	Sets the environment.


	Parameters:

	env (VecEnv) – 



	Return type:

	None










	
size()

	
	Return type:

	int



	Returns:

	The current size of the buffer










	
static swap_and_flatten(arr)

	Swap and then flatten axes 0 (buffer_size) and 1 (n_envs)
to convert shape from [n_steps, n_envs, …] (when … is the shape of the features)
to [n_steps * n_envs, …] (which maintain the order)


	Parameters:

	arr (ndarray) – 



	Return type:

	ndarray



	Returns:

	










	
to_torch(array, copy=True)

	Convert a numpy array to a PyTorch tensor.
Note: it copies the data by default


	Parameters:

	
	array (ndarray) – 


	copy (bool) – Whether to copy or not the data (may be useful to avoid changing things
by reference). This argument is inoperative if the device is not the CPU.






	Return type:

	Tensor



	Returns:

	










	
truncate_last_trajectory()

	If called, we assume that the last trajectory in the replay buffer was finished
(and truncate it).
If not called, we assume that we continue the same trajectory (same episode).


	Return type:

	None















Goal Selection Strategies


	
class stable_baselines3.her.GoalSelectionStrategy(value)

	The strategies for selecting new goals when
creating artificial transitions.









            

          

      

      

    

  

    
      
          
            
  
PPO

The Proximal Policy Optimization [https://arxiv.org/abs/1707.06347] algorithm combines ideas from A2C (having multiple workers)
and TRPO (it uses a trust region to improve the actor).

The main idea is that after an update, the new policy should be not too far from the old policy.
For that, ppo uses clipping to avoid too large update.


Note

PPO contains several modifications from the original algorithm not documented
by OpenAI: advantages are normalized and value function can be also clipped.




Notes


	Original paper: https://arxiv.org/abs/1707.06347


	Clear explanation of PPO on Arxiv Insights channel: https://www.youtube.com/watch?v=5P7I-xPq8u8


	OpenAI blog post: https://blog.openai.com/openai-baselines-ppo/


	Spinning Up guide: https://spinningup.openai.com/en/latest/algorithms/ppo.html


	37 implementation details blog: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/






Can I use?


Note

A recurrent version of PPO is available in our contrib repo: https://sb3-contrib.readthedocs.io/en/master/modules/ppo_recurrent.html

However we advise users to start with simple frame-stacking as a simpler, faster
and usually competitive alternative, more info in our report: https://wandb.ai/sb3/no-vel-envs/reports/PPO-vs-RecurrentPPO-aka-PPO-LSTM-on-environments-with-masked-velocity–VmlldzoxOTI4NjE4 [https://wandb.ai/sb3/no-vel-envs/reports/PPO-vs-RecurrentPPO-aka-PPO-LSTM-on-environments-with-masked-velocity--VmlldzoxOTI4NjE4]
See also Procgen paper appendix Fig 11. [https://arxiv.org/abs/1912.01588].
In practice, you can stack multiple observations using VecFrameStack.




	Recurrent policies: ❌


	Multi processing: ✔️


	Gym spaces:






	Space

	Action

	Observation





	Discrete

	✔️

	✔️



	Box

	✔️

	✔️



	MultiDiscrete

	✔️

	✔️



	MultiBinary

	✔️

	✔️



	Dict

	❌

	✔️








Example

This example is only to demonstrate the use of the library and its functions, and the trained agents may not solve the environments. Optimized hyperparameters can be found in RL Zoo repository [https://github.com/DLR-RM/rl-baselines3-zoo].

Train a PPO agent on CartPole-v1 using 4 environments.

import gymnasium as gym

from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env

# Parallel environments
vec_env = make_vec_env("CartPole-v1", n_envs=4)

model = PPO("MlpPolicy", vec_env, verbose=1)
model.learn(total_timesteps=25000)
model.save("ppo_cartpole")

del model # remove to demonstrate saving and loading

model = PPO.load("ppo_cartpole")

obs = vec_env.reset()
while True:
    action, _states = model.predict(obs)
    obs, rewards, dones, info = vec_env.step(action)
    vec_env.render("human")







Results


Atari Games

The complete learning curves are available in the associated PR #110 [https://github.com/DLR-RM/stable-baselines3/pull/110].



PyBullet Environments

Results on the PyBullet benchmark (2M steps) using 6 seeds.
The complete learning curves are available in the associated issue #48 [https://github.com/DLR-RM/stable-baselines3/issues/48].


Note

Hyperparameters from the gSDE paper [https://arxiv.org/abs/2005.05719] were used (as they are tuned for PyBullet envs).



Gaussian means that the unstructured Gaussian noise is used for exploration,
gSDE (generalized State-Dependent Exploration) is used otherwise.



	Environments

	A2C

	A2C

	PPO

	PPO





	
	Gaussian

	gSDE

	Gaussian

	gSDE



	HalfCheetah

	2003 +/- 54

	2032 +/- 122

	1976 +/- 479

	2826 +/- 45



	Ant

	2286 +/- 72

	2443 +/- 89

	2364 +/- 120

	2782 +/- 76



	Hopper

	1627 +/- 158

	1561 +/- 220

	1567 +/- 339

	2512 +/- 21



	Walker2D

	577 +/- 65

	839 +/- 56

	1230 +/- 147

	2019 +/- 64








How to replicate the results?

Clone the rl-zoo repo [https://github.com/DLR-RM/rl-baselines3-zoo]:

git clone https://github.com/DLR-RM/rl-baselines3-zoo
cd rl-baselines3-zoo/





Run the benchmark (replace $ENV_ID by the envs mentioned above):

python train.py --algo ppo --env $ENV_ID --eval-episodes 10 --eval-freq 10000





Plot the results (here for PyBullet envs only):

python scripts/all_plots.py -a ppo -e HalfCheetah Ant Hopper Walker2D -f logs/ -o logs/ppo_results
python scripts/plot_from_file.py -i logs/ppo_results.pkl -latex -l PPO








Parameters


	
class stable_baselines3.ppo.PPO(policy, env, learning_rate=0.0003, n_steps=2048, batch_size=64, n_epochs=10, gamma=0.99, gae_lambda=0.95, clip_range=0.2, clip_range_vf=None, normalize_advantage=True, ent_coef=0.0, vf_coef=0.5, max_grad_norm=0.5, use_sde=False, sde_sample_freq=-1, target_kl=None, stats_window_size=100, tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None, device='auto', _init_setup_model=True)

	Proximal Policy Optimization algorithm (PPO) (clip version)

Paper: https://arxiv.org/abs/1707.06347
Code: This implementation borrows code from OpenAI Spinning Up (https://github.com/openai/spinningup/)
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and
Stable Baselines (PPO2 from https://github.com/hill-a/stable-baselines)

Introduction to PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html


	Parameters:

	
	policy (Union[str, Type[ActorCriticPolicy]]) – The policy model to use (MlpPolicy, CnnPolicy, …)


	env (Union[Env, VecEnv, str]) – The environment to learn from (if registered in Gym, can be str)


	learning_rate (Union[float, Callable[[float], float]]) – The learning rate, it can be a function
of the current progress remaining (from 1 to 0)


	n_steps (int) – The number of steps to run for each environment per update
(i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel)
NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization)
See https://github.com/pytorch/pytorch/issues/29372


	batch_size (int) – Minibatch size


	n_epochs (int) – Number of epoch when optimizing the surrogate loss


	gamma (float) – Discount factor


	gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage Estimator


	clip_range (Union[float, Callable[[float], float]]) – Clipping parameter, it can be a function of the current progress
remaining (from 1 to 0).


	clip_range_vf (Union[None, float, Callable[[float], float]]) – Clipping parameter for the value function,
it can be a function of the current progress remaining (from 1 to 0).
This is a parameter specific to the OpenAI implementation. If None is passed (default),
no clipping will be done on the value function.
IMPORTANT: this clipping depends on the reward scaling.


	normalize_advantage (bool) – Whether to normalize or not the advantage


	ent_coef (float) – Entropy coefficient for the loss calculation


	vf_coef (float) – Value function coefficient for the loss calculation


	max_grad_norm (float) – The maximum value for the gradient clipping


	use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)


	sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)


	target_kl (Optional[float]) – Limit the KL divergence between updates,
because the clipping is not enough to prevent large update
see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213)
By default, there is no limit on the kl div.


	stats_window_size (int) – Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over


	tensorboard_log (Optional[str]) – the log location for tensorboard (if None, no logging)


	policy_kwargs (Optional[Dict[str, Any]]) – additional arguments to be passed to the policy on creation


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages


	seed (Optional[int]) – Seed for the pseudo random generators


	device (Union[device, str]) – Device (cpu, cuda, …) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.


	_init_setup_model (bool) – Whether or not to build the network at the creation of the instance









	
collect_rollouts(env, callback, rollout_buffer, n_rollout_steps)

	Collect experiences using the current policy and fill a RolloutBuffer.
The term rollout here refers to the model-free notion and should not
be used with the concept of rollout used in model-based RL or planning.


	Parameters:

	
	env (VecEnv) – The training environment


	callback (BaseCallback) – Callback that will be called at each step
(and at the beginning and end of the rollout)


	rollout_buffer (RolloutBuffer) – Buffer to fill with rollouts


	n_rollout_steps (int) – Number of experiences to collect per environment






	Return type:

	bool



	Returns:

	True if function returned with at least n_rollout_steps
collected, False if callback terminated rollout prematurely.










	
get_env()

	Returns the current environment (can be None if not defined).


	Return type:

	Optional[VecEnv]



	Returns:

	The current environment










	
get_parameters()

	Return the parameters of the agent. This includes parameters from different networks, e.g.
critics (value functions) and policies (pi functions).


	Return type:

	Dict[str, Dict]



	Returns:

	Mapping of from names of the objects to PyTorch state-dicts.










	
get_vec_normalize_env()

	Return the VecNormalize wrapper of the training env
if it exists.


	Return type:

	Optional[VecNormalize]



	Returns:

	The VecNormalize env.










	
learn(total_timesteps, callback=None, log_interval=1, tb_log_name='PPO', reset_num_timesteps=True, progress_bar=False)

	Return a trained model.


	Parameters:

	
	total_timesteps (int) – The total number of samples (env steps) to train on


	callback (Union[None, Callable, List[BaseCallback], BaseCallback]) – callback(s) called at every step with state of the algorithm.


	log_interval (int) – The number of episodes before logging.


	tb_log_name (str) – the name of the run for TensorBoard logging


	reset_num_timesteps (bool) – whether or not to reset the current timestep number (used in logging)


	progress_bar (bool) – Display a progress bar using tqdm and rich.






	Return type:

	TypeVar(SelfPPO, bound= PPO)



	Returns:

	the trained model










	
classmethod load(path, env=None, device='auto', custom_objects=None, print_system_info=False, force_reset=True, **kwargs)

	Load the model from a zip-file.
Warning: load re-creates the model from scratch, it does not update it in-place!
For an in-place load use set_parameters instead.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file (or a file-like) where to
load the agent from


	env (Union[Env, VecEnv, None]) – the new environment to run the loaded model on
(can be None if you only need prediction from a trained model) has priority over any saved environment


	device (Union[device, str]) – Device on which the code should run.


	custom_objects (Optional[Dict[str, Any]]) – Dictionary of objects to replace
upon loading. If a variable is present in this dictionary as a
key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in
keras.models.load_model. Useful when you have an object in
file that can not be deserialized.


	print_system_info (bool) – Whether to print system info from the saved model
and the current system info (useful to debug loading issues)


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See https://github.com/DLR-RM/stable-baselines3/issues/597


	kwargs – extra arguments to change the model when loading






	Return type:

	TypeVar(SelfBaseAlgorithm, bound= BaseAlgorithm)



	Returns:

	new model instance with loaded parameters










	
property logger: Logger

	Getter for the logger object.






	
predict(observation, state=None, episode_start=None, deterministic=False)

	Get the policy action from an observation (and optional hidden state).
Includes sugar-coating to handle different observations (e.g. normalizing images).


	Parameters:

	
	observation (Union[ndarray, Dict[str, ndarray]]) – the input observation


	state (Optional[Tuple[ndarray, ...]]) – The last hidden states (can be None, used in recurrent policies)


	episode_start (Optional[ndarray]) – The last masks (can be None, used in recurrent policies)
this correspond to beginning of episodes,
where the hidden states of the RNN must be reset.


	deterministic (bool) – Whether or not to return deterministic actions.






	Return type:

	Tuple[ndarray, Optional[Tuple[ndarray, ...]]]



	Returns:

	the model’s action and the next hidden state
(used in recurrent policies)










	
save(path, exclude=None, include=None)

	Save all the attributes of the object and the model parameters in a zip-file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file where the rl agent should be saved


	exclude (Optional[Iterable[str]]) – name of parameters that should be excluded in addition to the default ones


	include (Optional[Iterable[str]]) – name of parameters that might be excluded but should be included anyway






	Return type:

	None










	
set_env(env, force_reset=True)

	Checks the validity of the environment, and if it is coherent, set it as the current environment.
Furthermore wrap any non vectorized env into a vectorized
checked parameters:
- observation_space
- action_space


	Parameters:

	
	env (Union[Env, VecEnv]) – The environment for learning a policy


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See issue https://github.com/DLR-RM/stable-baselines3/issues/597






	Return type:

	None










	
set_logger(logger)

	Setter for for logger object.
:rtype: None


Warning

When passing a custom logger object,
this will overwrite tensorboard_log and verbose settings
passed to the constructor.








	
set_parameters(load_path_or_dict, exact_match=True, device='auto')

	Load parameters from a given zip-file or a nested dictionary containing parameters for
different modules (see get_parameters).


	Parameters:

	
	load_path_or_iter – Location of the saved data (path or file-like, see save), or a nested
dictionary containing nn.Module parameters used by the policy. The dictionary maps
object names to a state-dictionary returned by torch.nn.Module.state_dict().


	exact_match (bool) – If True, the given parameters should include parameters for each
module and each of their parameters, otherwise raises an Exception. If set to False, this
can be used to update only specific parameters.


	device (Union[device, str]) – Device on which the code should run.






	Return type:

	None










	
set_random_seed(seed=None)

	Set the seed of the pseudo-random generators
(python, numpy, pytorch, gym, action_space)


	Parameters:

	seed (Optional[int]) – 



	Return type:

	None










	
train()

	Update policy using the currently gathered rollout buffer.


	Return type:

	None















PPO Policies


	
stable_baselines3.ppo.MlpPolicy

	alias of ActorCriticPolicy






	
class stable_baselines3.common.policies.ActorCriticPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.Tanh'>, ortho_init=True, use_sde=False, log_std_init=0.0, full_std=True, use_expln=False, squash_output=False, features_extractor_class=<class 'stable_baselines3.common.torch_layers.FlattenExtractor'>, features_extractor_kwargs=None, share_features_extractor=True, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None)

	Policy class for actor-critic algorithms (has both policy and value prediction).
Used by A2C, PPO and the likes.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Space) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	ortho_init (bool) – Whether to use or not orthogonal initialization


	use_sde (bool) – Whether to use State Dependent Exploration or not


	log_std_init (float) – Initial value for the log standard deviation


	full_std (bool) – Whether to use (n_features x n_actions) parameters
for the std instead of only (n_features,) when using gSDE


	use_expln (bool) – Use expln() function instead of exp() to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	squash_output (bool) – Whether to squash the output using a tanh function,
this allows to ensure boundaries when using gSDE.


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	share_features_extractor (bool) – If True, the features extractor is shared between the policy and value networks.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer









	
evaluate_actions(obs, actions)

	Evaluate actions according to the current policy,
given the observations.


	Parameters:

	
	obs (Tensor) – Observation


	actions (Tensor) – Actions






	Return type:

	Tuple[Tensor, Tensor, Optional[Tensor]]



	Returns:

	estimated value, log likelihood of taking those actions
and entropy of the action distribution.










	
extract_features(obs)

	Preprocess the observation if needed and extract features.


	Parameters:

	obs (Tensor) – Observation



	Return type:

	Union[Tensor, Tuple[Tensor, Tensor]]



	Returns:

	the output of the features extractor(s)










	
forward(obs, deterministic=False)

	Forward pass in all the networks (actor and critic)


	Parameters:

	
	obs (Tensor) – Observation


	deterministic (bool) – Whether to sample or use deterministic actions






	Return type:

	Tuple[Tensor, Tensor, Tensor]



	Returns:

	action, value and log probability of the action










	
get_distribution(obs)

	Get the current policy distribution given the observations.


	Parameters:

	obs (Tensor) – 



	Return type:

	Distribution



	Returns:

	the action distribution.










	
predict_values(obs)

	Get the estimated values according to the current policy given the observations.


	Parameters:

	obs (Tensor) – Observation



	Return type:

	Tensor



	Returns:

	the estimated values.










	
reset_noise(n_envs=1)

	Sample new weights for the exploration matrix.


	Parameters:

	n_envs (int) – 



	Return type:

	None














	
stable_baselines3.ppo.CnnPolicy

	alias of ActorCriticCnnPolicy






	
class stable_baselines3.common.policies.ActorCriticCnnPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.Tanh'>, ortho_init=True, use_sde=False, log_std_init=0.0, full_std=True, use_expln=False, squash_output=False, features_extractor_class=<class 'stable_baselines3.common.torch_layers.NatureCNN'>, features_extractor_kwargs=None, share_features_extractor=True, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None)

	CNN policy class for actor-critic algorithms (has both policy and value prediction).
Used by A2C, PPO and the likes.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Space) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	ortho_init (bool) – Whether to use or not orthogonal initialization


	use_sde (bool) – Whether to use State Dependent Exploration or not


	log_std_init (float) – Initial value for the log standard deviation


	full_std (bool) – Whether to use (n_features x n_actions) parameters
for the std instead of only (n_features,) when using gSDE


	use_expln (bool) – Use expln() function instead of exp() to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	squash_output (bool) – Whether to squash the output using a tanh function,
this allows to ensure boundaries when using gSDE.


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	share_features_extractor (bool) – If True, the features extractor is shared between the policy and value networks.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer













	
stable_baselines3.ppo.MultiInputPolicy

	alias of MultiInputActorCriticPolicy






	
class stable_baselines3.common.policies.MultiInputActorCriticPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.Tanh'>, ortho_init=True, use_sde=False, log_std_init=0.0, full_std=True, use_expln=False, squash_output=False, features_extractor_class=<class 'stable_baselines3.common.torch_layers.CombinedExtractor'>, features_extractor_kwargs=None, share_features_extractor=True, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None)

	MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).
Used by A2C, PPO and the likes.


	Parameters:

	
	observation_space (Dict) – Observation space (Tuple)


	action_space (Space) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	ortho_init (bool) – Whether to use or not orthogonal initialization


	use_sde (bool) – Whether to use State Dependent Exploration or not


	log_std_init (float) – Initial value for the log standard deviation


	full_std (bool) – Whether to use (n_features x n_actions) parameters
for the std instead of only (n_features,) when using gSDE


	use_expln (bool) – Use expln() function instead of exp() to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	squash_output (bool) – Whether to squash the output using a tanh function,
this allows to ensure boundaries when using gSDE.


	features_extractor_class (Type[BaseFeaturesExtractor]) – Uses the CombinedExtractor


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	share_features_extractor (bool) – If True, the features extractor is shared between the policy and value networks.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer
















            

          

      

      

    

  

    
      
          
            
  
SAC

Soft Actor Critic (SAC) [https://spinningup.openai.com/en/latest/algorithms/sac.html] Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.

SAC is the successor of Soft Q-Learning SQL [https://arxiv.org/abs/1702.08165] and incorporates the double Q-learning trick from TD3.
A key feature of SAC, and a major difference with common RL algorithms, is that it is trained to maximize a trade-off between expected return and entropy, a measure of randomness in the policy.

Available Policies



	MlpPolicy

	alias of SACPolicy



	CnnPolicy

	Policy class (with both actor and critic) for SAC.



	MultiInputPolicy

	Policy class (with both actor and critic) for SAC.







Notes


	Original paper: https://arxiv.org/abs/1801.01290


	OpenAI Spinning Guide for SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html


	Original Implementation: https://github.com/haarnoja/sac


	Blog post on using SAC with real robots: https://bair.berkeley.edu/blog/2018/12/14/sac/





Note

In our implementation, we use an entropy coefficient (as in OpenAI Spinning or Facebook Horizon),
which is the equivalent to the inverse of reward scale in the original SAC paper.
The main reason is that it avoids having too high errors when updating the Q functions.




Note

The default policies for SAC differ a bit from others MlpPolicy: it uses ReLU instead of tanh activation,
to match the original paper





Can I use?


	Recurrent policies: ❌


	Multi processing: ✔️


	Gym spaces:






	Space

	Action

	Observation





	Discrete

	❌

	✔️



	Box

	✔️

	✔️



	MultiDiscrete

	❌

	✔️



	MultiBinary

	❌

	✔️



	Dict

	❌

	✔️








Example

This example is only to demonstrate the use of the library and its functions, and the trained agents may not solve the environments. Optimized hyperparameters can be found in RL Zoo repository [https://github.com/DLR-RM/rl-baselines3-zoo].

import gymnasium as gym

from stable_baselines3 import SAC

env = gym.make("Pendulum-v1", render_mode="human")

model = SAC("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=10000, log_interval=4)
model.save("sac_pendulum")

del model # remove to demonstrate saving and loading

model = SAC.load("sac_pendulum")

obs, info = env.reset()
while True:
    action, _states = model.predict(obs, deterministic=True)
    obs, reward, terminated, truncated, info = env.step(action)
    if terminated or truncated:
        obs, info = env.reset()







Results


PyBullet Environments

Results on the PyBullet benchmark (1M steps) using 3 seeds.
The complete learning curves are available in the associated issue #48 [https://github.com/DLR-RM/stable-baselines3/issues/48].


Note

Hyperparameters from the gSDE paper [https://arxiv.org/abs/2005.05719] were used (as they are tuned for PyBullet envs).



Gaussian means that the unstructured Gaussian noise is used for exploration,
gSDE (generalized State-Dependent Exploration) is used otherwise.



	Environments

	SAC

	SAC

	TD3





	
	Gaussian

	gSDE

	Gaussian



	HalfCheetah

	2757 +/- 53

	2984 +/- 202

	2774 +/- 35



	Ant

	3146 +/- 35

	3102 +/- 37

	3305 +/- 43



	Hopper

	2422 +/- 168

	2262 +/- 1

	2429 +/- 126



	Walker2D

	2184 +/- 54

	2136 +/- 67

	2063 +/- 185








How to replicate the results?

Clone the rl-zoo repo [https://github.com/DLR-RM/rl-baselines3-zoo]:

git clone https://github.com/DLR-RM/rl-baselines3-zoo
cd rl-baselines3-zoo/





Run the benchmark (replace $ENV_ID by the envs mentioned above):

python train.py --algo sac --env $ENV_ID --eval-episodes 10 --eval-freq 10000





Plot the results:

python scripts/all_plots.py -a sac -e HalfCheetah Ant Hopper Walker2D -f logs/ -o logs/sac_results
python scripts/plot_from_file.py -i logs/sac_results.pkl -latex -l SAC








Parameters


	
class stable_baselines3.sac.SAC(policy, env, learning_rate=0.0003, buffer_size=1000000, learning_starts=100, batch_size=256, tau=0.005, gamma=0.99, train_freq=1, gradient_steps=1, action_noise=None, replay_buffer_class=None, replay_buffer_kwargs=None, optimize_memory_usage=False, ent_coef='auto', target_update_interval=1, target_entropy='auto', use_sde=False, sde_sample_freq=-1, use_sde_at_warmup=False, stats_window_size=100, tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None, device='auto', _init_setup_model=True)

	Soft Actor-Critic (SAC)
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo
(https://github.com/rail-berkeley/softlearning/)
and from Stable Baselines (https://github.com/hill-a/stable-baselines)
Paper: https://arxiv.org/abs/1801.01290
Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html

Note: we use double q target and not value target as discussed
in https://github.com/hill-a/stable-baselines/issues/270


	Parameters:

	
	policy (Union[str, Type[SACPolicy]]) – The policy model to use (MlpPolicy, CnnPolicy, …)


	env (Union[Env, VecEnv, str]) – The environment to learn from (if registered in Gym, can be str)


	learning_rate (Union[float, Callable[[float], float]]) – learning rate for adam optimizer,
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
it can be a function of the current progress remaining (from 1 to 0)


	buffer_size (int) – size of the replay buffer


	learning_starts (int) – how many steps of the model to collect transitions for before learning starts


	batch_size (int) – Minibatch size for each gradient update


	tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1)


	gamma (float) – the discount factor


	train_freq (Union[int, Tuple[int, str]]) – Update the model every train_freq steps. Alternatively pass a tuple of frequency and unit
like (5, "step") or (2, "episode").


	gradient_steps (int) – How many gradient steps to do after each rollout (see train_freq)
Set to -1 means to do as many gradient steps as steps done in the environment
during the rollout.


	action_noise (Optional[ActionNoise]) – the action noise type (None by default), this can help
for hard exploration problem. Cf common.noise for the different action noise type.


	replay_buffer_class (Optional[Type[ReplayBuffer]]) – Replay buffer class to use (for instance HerReplayBuffer).
If None, it will be automatically selected.


	replay_buffer_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the replay buffer on creation.


	optimize_memory_usage (bool) – Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195


	ent_coef (Union[str, float]) – Entropy regularization coefficient. (Equivalent to
inverse of reward scale in the original SAC paper.)  Controlling exploration/exploitation trade-off.
Set it to ‘auto’ to learn it automatically (and ‘auto_0.1’ for using 0.1 as initial value)


	target_update_interval (int) – update the target network every target_network_update_freq
gradient steps.


	target_entropy (Union[str, float]) – target entropy when learning ent_coef (ent_coef = 'auto')


	use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)


	sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)


	use_sde_at_warmup (bool) – Whether to use gSDE instead of uniform sampling
during the warm up phase (before learning starts)


	stats_window_size (int) – Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over


	tensorboard_log (Optional[str]) – the log location for tensorboard (if None, no logging)


	policy_kwargs (Optional[Dict[str, Any]]) – additional arguments to be passed to the policy on creation


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages


	seed (Optional[int]) – Seed for the pseudo random generators


	device (Union[device, str]) – Device (cpu, cuda, …) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.


	_init_setup_model (bool) – Whether or not to build the network at the creation of the instance









	
collect_rollouts(env, callback, train_freq, replay_buffer, action_noise=None, learning_starts=0, log_interval=None)

	Collect experiences and store them into a ReplayBuffer.


	Parameters:

	
	env (VecEnv) – The training environment


	callback (BaseCallback) – Callback that will be called at each step
(and at the beginning and end of the rollout)


	train_freq (TrainFreq) – How much experience to collect
by doing rollouts of current policy.
Either TrainFreq(<n>, TrainFrequencyUnit.STEP)
or TrainFreq(<n>, TrainFrequencyUnit.EPISODE)
with <n> being an integer greater than 0.


	action_noise (Optional[ActionNoise]) – Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.


	learning_starts (int) – Number of steps before learning for the warm-up phase.


	replay_buffer (ReplayBuffer) – 


	log_interval (Optional[int]) – Log data every log_interval episodes






	Return type:

	RolloutReturn



	Returns:

	










	
get_env()

	Returns the current environment (can be None if not defined).


	Return type:

	Optional[VecEnv]



	Returns:

	The current environment










	
get_parameters()

	Return the parameters of the agent. This includes parameters from different networks, e.g.
critics (value functions) and policies (pi functions).


	Return type:

	Dict[str, Dict]



	Returns:

	Mapping of from names of the objects to PyTorch state-dicts.










	
get_vec_normalize_env()

	Return the VecNormalize wrapper of the training env
if it exists.


	Return type:

	Optional[VecNormalize]



	Returns:

	The VecNormalize env.










	
learn(total_timesteps, callback=None, log_interval=4, tb_log_name='SAC', reset_num_timesteps=True, progress_bar=False)

	Return a trained model.


	Parameters:

	
	total_timesteps (int) – The total number of samples (env steps) to train on


	callback (Union[None, Callable, List[BaseCallback], BaseCallback]) – callback(s) called at every step with state of the algorithm.


	log_interval (int) – The number of episodes before logging.


	tb_log_name (str) – the name of the run for TensorBoard logging


	reset_num_timesteps (bool) – whether or not to reset the current timestep number (used in logging)


	progress_bar (bool) – Display a progress bar using tqdm and rich.






	Return type:

	TypeVar(SelfSAC, bound= SAC)



	Returns:

	the trained model










	
classmethod load(path, env=None, device='auto', custom_objects=None, print_system_info=False, force_reset=True, **kwargs)

	Load the model from a zip-file.
Warning: load re-creates the model from scratch, it does not update it in-place!
For an in-place load use set_parameters instead.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file (or a file-like) where to
load the agent from


	env (Union[Env, VecEnv, None]) – the new environment to run the loaded model on
(can be None if you only need prediction from a trained model) has priority over any saved environment


	device (Union[device, str]) – Device on which the code should run.


	custom_objects (Optional[Dict[str, Any]]) – Dictionary of objects to replace
upon loading. If a variable is present in this dictionary as a
key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in
keras.models.load_model. Useful when you have an object in
file that can not be deserialized.


	print_system_info (bool) – Whether to print system info from the saved model
and the current system info (useful to debug loading issues)


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See https://github.com/DLR-RM/stable-baselines3/issues/597


	kwargs – extra arguments to change the model when loading






	Return type:

	TypeVar(SelfBaseAlgorithm, bound= BaseAlgorithm)



	Returns:

	new model instance with loaded parameters










	
load_replay_buffer(path, truncate_last_traj=True)

	Load a replay buffer from a pickle file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – Path to the pickled replay buffer.


	truncate_last_traj (bool) – When using HerReplayBuffer with online sampling:
If set to True, we assume that the last trajectory in the replay buffer was finished
(and truncate it).
If set to False, we assume that we continue the same trajectory (same episode).






	Return type:

	None










	
property logger: Logger

	Getter for the logger object.






	
predict(observation, state=None, episode_start=None, deterministic=False)

	Get the policy action from an observation (and optional hidden state).
Includes sugar-coating to handle different observations (e.g. normalizing images).


	Parameters:

	
	observation (Union[ndarray, Dict[str, ndarray]]) – the input observation


	state (Optional[Tuple[ndarray, ...]]) – The last hidden states (can be None, used in recurrent policies)


	episode_start (Optional[ndarray]) – The last masks (can be None, used in recurrent policies)
this correspond to beginning of episodes,
where the hidden states of the RNN must be reset.


	deterministic (bool) – Whether or not to return deterministic actions.






	Return type:

	Tuple[ndarray, Optional[Tuple[ndarray, ...]]]



	Returns:

	the model’s action and the next hidden state
(used in recurrent policies)










	
save(path, exclude=None, include=None)

	Save all the attributes of the object and the model parameters in a zip-file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file where the rl agent should be saved


	exclude (Optional[Iterable[str]]) – name of parameters that should be excluded in addition to the default ones


	include (Optional[Iterable[str]]) – name of parameters that might be excluded but should be included anyway






	Return type:

	None










	
save_replay_buffer(path)

	Save the replay buffer as a pickle file.


	Parameters:

	path (Union[str, Path, BufferedIOBase]) – Path to the file where the replay buffer should be saved.
if path is a str or pathlib.Path, the path is automatically created if necessary.



	Return type:

	None










	
set_env(env, force_reset=True)

	Checks the validity of the environment, and if it is coherent, set it as the current environment.
Furthermore wrap any non vectorized env into a vectorized
checked parameters:
- observation_space
- action_space


	Parameters:

	
	env (Union[Env, VecEnv]) – The environment for learning a policy


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See issue https://github.com/DLR-RM/stable-baselines3/issues/597






	Return type:

	None










	
set_logger(logger)

	Setter for for logger object.
:rtype: None


Warning

When passing a custom logger object,
this will overwrite tensorboard_log and verbose settings
passed to the constructor.








	
set_parameters(load_path_or_dict, exact_match=True, device='auto')

	Load parameters from a given zip-file or a nested dictionary containing parameters for
different modules (see get_parameters).


	Parameters:

	
	load_path_or_iter – Location of the saved data (path or file-like, see save), or a nested
dictionary containing nn.Module parameters used by the policy. The dictionary maps
object names to a state-dictionary returned by torch.nn.Module.state_dict().


	exact_match (bool) – If True, the given parameters should include parameters for each
module and each of their parameters, otherwise raises an Exception. If set to False, this
can be used to update only specific parameters.


	device (Union[device, str]) – Device on which the code should run.






	Return type:

	None










	
set_random_seed(seed=None)

	Set the seed of the pseudo-random generators
(python, numpy, pytorch, gym, action_space)


	Parameters:

	seed (Optional[int]) – 



	Return type:

	None










	
train(gradient_steps, batch_size=64)

	Sample the replay buffer and do the updates
(gradient descent and update target networks)


	Return type:

	None















SAC Policies


	
stable_baselines3.sac.MlpPolicy

	alias of SACPolicy






	
class stable_baselines3.sac.policies.SACPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, use_sde=False, log_std_init=-3, use_expln=False, clip_mean=2.0, features_extractor_class=<class 'stable_baselines3.common.torch_layers.FlattenExtractor'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None, n_critics=2, share_features_extractor=False)

	Policy class (with both actor and critic) for SAC.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Box) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	use_sde (bool) – Whether to use State Dependent Exploration or not


	log_std_init (float) – Initial value for the log standard deviation


	use_expln (bool) – Use expln() function instead of exp() when using gSDE to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	clip_mean (float) – Clip the mean output when using gSDE to avoid numerical instability.


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer


	n_critics (int) – Number of critic networks to create.


	share_features_extractor (bool) – Whether to share or not the features extractor
between the actor and the critic (this saves computation time)









	
forward(obs, deterministic=False)

	Defines the computation performed at every call.

Should be overridden by all subclasses.
:rtype: Tensor


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
reset_noise(batch_size=1)

	Sample new weights for the exploration matrix, when using gSDE.


	Parameters:

	batch_size (int) – 



	Return type:

	None










	
set_training_mode(mode)

	Put the policy in either training or evaluation mode.

This affects certain modules, such as batch normalisation and dropout.


	Parameters:

	mode (bool) – if true, set to training mode, else set to evaluation mode



	Return type:

	None














	
class stable_baselines3.sac.CnnPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, use_sde=False, log_std_init=-3, use_expln=False, clip_mean=2.0, features_extractor_class=<class 'stable_baselines3.common.torch_layers.NatureCNN'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None, n_critics=2, share_features_extractor=False)

	Policy class (with both actor and critic) for SAC.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Box) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	use_sde (bool) – Whether to use State Dependent Exploration or not


	log_std_init (float) – Initial value for the log standard deviation


	use_expln (bool) – Use expln() function instead of exp() when using gSDE to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	clip_mean (float) – Clip the mean output when using gSDE to avoid numerical instability.


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer


	n_critics (int) – Number of critic networks to create.


	share_features_extractor (bool) – Whether to share or not the features extractor
between the actor and the critic (this saves computation time)













	
class stable_baselines3.sac.MultiInputPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, use_sde=False, log_std_init=-3, use_expln=False, clip_mean=2.0, features_extractor_class=<class 'stable_baselines3.common.torch_layers.CombinedExtractor'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None, n_critics=2, share_features_extractor=False)

	Policy class (with both actor and critic) for SAC.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Box) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	use_sde (bool) – Whether to use State Dependent Exploration or not


	log_std_init (float) – Initial value for the log standard deviation


	use_expln (bool) – Use expln() function instead of exp() when using gSDE to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	clip_mean (float) – Clip the mean output when using gSDE to avoid numerical instability.


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer


	n_critics (int) – Number of critic networks to create.


	share_features_extractor (bool) – Whether to share or not the features extractor
between the actor and the critic (this saves computation time)
















            

          

      

      

    

  

    
      
          
            
  
TD3

Twin Delayed DDPG (TD3) [https://spinningup.openai.com/en/latest/algorithms/td3.html] Addressing Function Approximation Error in Actor-Critic Methods.

TD3 is a direct successor of DDPG and improves it using three major tricks: clipped double Q-Learning, delayed policy update and target policy smoothing.
We recommend reading OpenAI Spinning guide on TD3 [https://spinningup.openai.com/en/latest/algorithms/td3.html] to learn more about those.

Available Policies



	MlpPolicy

	alias of TD3Policy



	CnnPolicy

	Policy class (with both actor and critic) for TD3.



	MultiInputPolicy

	Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.







Notes


	Original paper: https://arxiv.org/pdf/1802.09477.pdf


	OpenAI Spinning Guide for TD3: https://spinningup.openai.com/en/latest/algorithms/td3.html


	Original Implementation: https://github.com/sfujim/TD3





Note

The default policies for TD3 differ a bit from others MlpPolicy: it uses ReLU instead of tanh activation,
to match the original paper





Can I use?


	Recurrent policies: ❌


	Multi processing: ✔️


	Gym spaces:






	Space

	Action

	Observation





	Discrete

	❌

	✔️



	Box

	✔️

	✔️



	MultiDiscrete

	❌

	✔️



	MultiBinary

	❌

	✔️



	Dict

	❌

	✔️








Example

This example is only to demonstrate the use of the library and its functions, and the trained agents may not solve the environments. Optimized hyperparameters can be found in RL Zoo repository [https://github.com/DLR-RM/rl-baselines3-zoo].

import gymnasium as gym
import numpy as np

from stable_baselines3 import TD3
from stable_baselines3.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise

env = gym.make("Pendulum-v1", render_mode="rgb_array")

# The noise objects for TD3
n_actions = env.action_space.shape[-1]
action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))

model = TD3("MlpPolicy", env, action_noise=action_noise, verbose=1)
model.learn(total_timesteps=10000, log_interval=10)
model.save("td3_pendulum")
vec_env = model.get_env()

del model # remove to demonstrate saving and loading

model = TD3.load("td3_pendulum")

obs = vec_env.reset()
while True:
    action, _states = model.predict(obs)
    obs, rewards, dones, info = vec_env.step(action)
    vec_env.render("human")







Results


PyBullet Environments

Results on the PyBullet benchmark (1M steps) using 3 seeds.
The complete learning curves are available in the associated issue #48 [https://github.com/DLR-RM/stable-baselines3/issues/48].


Note

Hyperparameters from the gSDE paper [https://arxiv.org/abs/2005.05719] were used (as they are tuned for PyBullet envs).



Gaussian means that the unstructured Gaussian noise is used for exploration,
gSDE (generalized State-Dependent Exploration) is used otherwise.



	Environments

	SAC

	SAC

	TD3





	
	Gaussian

	gSDE

	Gaussian



	HalfCheetah

	2757 +/- 53

	2984 +/- 202

	2774 +/- 35



	Ant

	3146 +/- 35

	3102 +/- 37

	3305 +/- 43



	Hopper

	2422 +/- 168

	2262 +/- 1

	2429 +/- 126



	Walker2D

	2184 +/- 54

	2136 +/- 67

	2063 +/- 185








How to replicate the results?

Clone the rl-zoo repo [https://github.com/DLR-RM/rl-baselines3-zoo]:

git clone https://github.com/DLR-RM/rl-baselines3-zoo
cd rl-baselines3-zoo/





Run the benchmark (replace $ENV_ID by the envs mentioned above):

python train.py --algo td3 --env $ENV_ID --eval-episodes 10 --eval-freq 10000





Plot the results:

python scripts/all_plots.py -a td3 -e HalfCheetah Ant Hopper Walker2D -f logs/ -o logs/td3_results
python scripts/plot_from_file.py -i logs/td3_results.pkl -latex -l TD3








Parameters


	
class stable_baselines3.td3.TD3(policy, env, learning_rate=0.001, buffer_size=1000000, learning_starts=100, batch_size=100, tau=0.005, gamma=0.99, train_freq=(1, 'episode'), gradient_steps=-1, action_noise=None, replay_buffer_class=None, replay_buffer_kwargs=None, optimize_memory_usage=False, policy_delay=2, target_policy_noise=0.2, target_noise_clip=0.5, stats_window_size=100, tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None, device='auto', _init_setup_model=True)

	Twin Delayed DDPG (TD3)
Addressing Function Approximation Error in Actor-Critic Methods.

Original implementation: https://github.com/sfujim/TD3
Paper: https://arxiv.org/abs/1802.09477
Introduction to TD3: https://spinningup.openai.com/en/latest/algorithms/td3.html


	Parameters:

	
	policy (Union[str, Type[TD3Policy]]) – The policy model to use (MlpPolicy, CnnPolicy, …)


	env (Union[Env, VecEnv, str]) – The environment to learn from (if registered in Gym, can be str)


	learning_rate (Union[float, Callable[[float], float]]) – learning rate for adam optimizer,
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
it can be a function of the current progress remaining (from 1 to 0)


	buffer_size (int) – size of the replay buffer


	learning_starts (int) – how many steps of the model to collect transitions for before learning starts


	batch_size (int) – Minibatch size for each gradient update


	tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1)


	gamma (float) – the discount factor


	train_freq (Union[int, Tuple[int, str]]) – Update the model every train_freq steps. Alternatively pass a tuple of frequency and unit
like (5, "step") or (2, "episode").


	gradient_steps (int) – How many gradient steps to do after each rollout (see train_freq)
Set to -1 means to do as many gradient steps as steps done in the environment
during the rollout.


	action_noise (Optional[ActionNoise]) – the action noise type (None by default), this can help
for hard exploration problem. Cf common.noise for the different action noise type.


	replay_buffer_class (Optional[Type[ReplayBuffer]]) – Replay buffer class to use (for instance HerReplayBuffer).
If None, it will be automatically selected.


	replay_buffer_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the replay buffer on creation.


	optimize_memory_usage (bool) – Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195


	policy_delay (int) – Policy and target networks will only be updated once every policy_delay steps
per training steps. The Q values will be updated policy_delay more often (update every training step).


	target_policy_noise (float) – Standard deviation of Gaussian noise added to target policy
(smoothing noise)


	target_noise_clip (float) – Limit for absolute value of target policy smoothing noise.


	stats_window_size (int) – Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over


	tensorboard_log (Optional[str]) – the log location for tensorboard (if None, no logging)


	policy_kwargs (Optional[Dict[str, Any]]) – additional arguments to be passed to the policy on creation


	verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages


	seed (Optional[int]) – Seed for the pseudo random generators


	device (Union[device, str]) – Device (cpu, cuda, …) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.


	_init_setup_model (bool) – Whether or not to build the network at the creation of the instance









	
collect_rollouts(env, callback, train_freq, replay_buffer, action_noise=None, learning_starts=0, log_interval=None)

	Collect experiences and store them into a ReplayBuffer.


	Parameters:

	
	env (VecEnv) – The training environment


	callback (BaseCallback) – Callback that will be called at each step
(and at the beginning and end of the rollout)


	train_freq (TrainFreq) – How much experience to collect
by doing rollouts of current policy.
Either TrainFreq(<n>, TrainFrequencyUnit.STEP)
or TrainFreq(<n>, TrainFrequencyUnit.EPISODE)
with <n> being an integer greater than 0.


	action_noise (Optional[ActionNoise]) – Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.


	learning_starts (int) – Number of steps before learning for the warm-up phase.


	replay_buffer (ReplayBuffer) – 


	log_interval (Optional[int]) – Log data every log_interval episodes






	Return type:

	RolloutReturn



	Returns:

	










	
get_env()

	Returns the current environment (can be None if not defined).


	Return type:

	Optional[VecEnv]



	Returns:

	The current environment










	
get_parameters()

	Return the parameters of the agent. This includes parameters from different networks, e.g.
critics (value functions) and policies (pi functions).


	Return type:

	Dict[str, Dict]



	Returns:

	Mapping of from names of the objects to PyTorch state-dicts.










	
get_vec_normalize_env()

	Return the VecNormalize wrapper of the training env
if it exists.


	Return type:

	Optional[VecNormalize]



	Returns:

	The VecNormalize env.










	
learn(total_timesteps, callback=None, log_interval=4, tb_log_name='TD3', reset_num_timesteps=True, progress_bar=False)

	Return a trained model.


	Parameters:

	
	total_timesteps (int) – The total number of samples (env steps) to train on


	callback (Union[None, Callable, List[BaseCallback], BaseCallback]) – callback(s) called at every step with state of the algorithm.


	log_interval (int) – The number of episodes before logging.


	tb_log_name (str) – the name of the run for TensorBoard logging


	reset_num_timesteps (bool) – whether or not to reset the current timestep number (used in logging)


	progress_bar (bool) – Display a progress bar using tqdm and rich.






	Return type:

	TypeVar(SelfTD3, bound= TD3)



	Returns:

	the trained model










	
classmethod load(path, env=None, device='auto', custom_objects=None, print_system_info=False, force_reset=True, **kwargs)

	Load the model from a zip-file.
Warning: load re-creates the model from scratch, it does not update it in-place!
For an in-place load use set_parameters instead.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file (or a file-like) where to
load the agent from


	env (Union[Env, VecEnv, None]) – the new environment to run the loaded model on
(can be None if you only need prediction from a trained model) has priority over any saved environment


	device (Union[device, str]) – Device on which the code should run.


	custom_objects (Optional[Dict[str, Any]]) – Dictionary of objects to replace
upon loading. If a variable is present in this dictionary as a
key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in
keras.models.load_model. Useful when you have an object in
file that can not be deserialized.


	print_system_info (bool) – Whether to print system info from the saved model
and the current system info (useful to debug loading issues)


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See https://github.com/DLR-RM/stable-baselines3/issues/597


	kwargs – extra arguments to change the model when loading






	Return type:

	TypeVar(SelfBaseAlgorithm, bound= BaseAlgorithm)



	Returns:

	new model instance with loaded parameters










	
load_replay_buffer(path, truncate_last_traj=True)

	Load a replay buffer from a pickle file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – Path to the pickled replay buffer.


	truncate_last_traj (bool) – When using HerReplayBuffer with online sampling:
If set to True, we assume that the last trajectory in the replay buffer was finished
(and truncate it).
If set to False, we assume that we continue the same trajectory (same episode).






	Return type:

	None










	
property logger: Logger

	Getter for the logger object.






	
predict(observation, state=None, episode_start=None, deterministic=False)

	Get the policy action from an observation (and optional hidden state).
Includes sugar-coating to handle different observations (e.g. normalizing images).


	Parameters:

	
	observation (Union[ndarray, Dict[str, ndarray]]) – the input observation


	state (Optional[Tuple[ndarray, ...]]) – The last hidden states (can be None, used in recurrent policies)


	episode_start (Optional[ndarray]) – The last masks (can be None, used in recurrent policies)
this correspond to beginning of episodes,
where the hidden states of the RNN must be reset.


	deterministic (bool) – Whether or not to return deterministic actions.






	Return type:

	Tuple[ndarray, Optional[Tuple[ndarray, ...]]]



	Returns:

	the model’s action and the next hidden state
(used in recurrent policies)










	
save(path, exclude=None, include=None)

	Save all the attributes of the object and the model parameters in a zip-file.


	Parameters:

	
	path (Union[str, Path, BufferedIOBase]) – path to the file where the rl agent should be saved


	exclude (Optional[Iterable[str]]) – name of parameters that should be excluded in addition to the default ones


	include (Optional[Iterable[str]]) – name of parameters that might be excluded but should be included anyway






	Return type:

	None










	
save_replay_buffer(path)

	Save the replay buffer as a pickle file.


	Parameters:

	path (Union[str, Path, BufferedIOBase]) – Path to the file where the replay buffer should be saved.
if path is a str or pathlib.Path, the path is automatically created if necessary.



	Return type:

	None










	
set_env(env, force_reset=True)

	Checks the validity of the environment, and if it is coherent, set it as the current environment.
Furthermore wrap any non vectorized env into a vectorized
checked parameters:
- observation_space
- action_space


	Parameters:

	
	env (Union[Env, VecEnv]) – The environment for learning a policy


	force_reset (bool) – Force call to reset() before training
to avoid unexpected behavior.
See issue https://github.com/DLR-RM/stable-baselines3/issues/597






	Return type:

	None










	
set_logger(logger)

	Setter for for logger object.
:rtype: None


Warning

When passing a custom logger object,
this will overwrite tensorboard_log and verbose settings
passed to the constructor.








	
set_parameters(load_path_or_dict, exact_match=True, device='auto')

	Load parameters from a given zip-file or a nested dictionary containing parameters for
different modules (see get_parameters).


	Parameters:

	
	load_path_or_iter – Location of the saved data (path or file-like, see save), or a nested
dictionary containing nn.Module parameters used by the policy. The dictionary maps
object names to a state-dictionary returned by torch.nn.Module.state_dict().


	exact_match (bool) – If True, the given parameters should include parameters for each
module and each of their parameters, otherwise raises an Exception. If set to False, this
can be used to update only specific parameters.


	device (Union[device, str]) – Device on which the code should run.






	Return type:

	None










	
set_random_seed(seed=None)

	Set the seed of the pseudo-random generators
(python, numpy, pytorch, gym, action_space)


	Parameters:

	seed (Optional[int]) – 



	Return type:

	None










	
train(gradient_steps, batch_size=100)

	Sample the replay buffer and do the updates
(gradient descent and update target networks)


	Return type:

	None















TD3 Policies


	
stable_baselines3.td3.MlpPolicy

	alias of TD3Policy






	
class stable_baselines3.td3.policies.TD3Policy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, features_extractor_class=<class 'stable_baselines3.common.torch_layers.FlattenExtractor'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None, n_critics=2, share_features_extractor=False)

	Policy class (with both actor and critic) for TD3.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Box) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer


	n_critics (int) – Number of critic networks to create.


	share_features_extractor (bool) – Whether to share or not the features extractor
between the actor and the critic (this saves computation time)









	
forward(observation, deterministic=False)

	Defines the computation performed at every call.

Should be overridden by all subclasses.
:rtype: Tensor


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
set_training_mode(mode)

	Put the policy in either training or evaluation mode.

This affects certain modules, such as batch normalisation and dropout.


	Parameters:

	mode (bool) – if true, set to training mode, else set to evaluation mode



	Return type:

	None














	
class stable_baselines3.td3.CnnPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, features_extractor_class=<class 'stable_baselines3.common.torch_layers.NatureCNN'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None, n_critics=2, share_features_extractor=False)

	Policy class (with both actor and critic) for TD3.


	Parameters:

	
	observation_space (Space) – Observation space


	action_space (Box) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer


	n_critics (int) – Number of critic networks to create.


	share_features_extractor (bool) – Whether to share or not the features extractor
between the actor and the critic (this saves computation time)













	
class stable_baselines3.td3.MultiInputPolicy(observation_space, action_space, lr_schedule, net_arch=None, activation_fn=<class 'torch.nn.modules.activation.ReLU'>, features_extractor_class=<class 'stable_baselines3.common.torch_layers.CombinedExtractor'>, features_extractor_kwargs=None, normalize_images=True, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs=None, n_critics=2, share_features_extractor=False)

	Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.


	Parameters:

	
	observation_space (Dict) – Observation space


	action_space (Box) – Action space


	lr_schedule (Callable[[float], float]) – Learning rate schedule (could be constant)


	net_arch (Union[List[int], Dict[str, List[int]], None]) – The specification of the policy and value networks.


	activation_fn (Type[Module]) – Activation function


	features_extractor_class (Type[BaseFeaturesExtractor]) – Features extractor to use.


	features_extractor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments
to pass to the features extractor.


	normalize_images (bool) – Whether to normalize images or not,
dividing by 255.0 (True by default)


	optimizer_class (Type[Optimizer]) – The optimizer to use,
th.optim.Adam by default


	optimizer_kwargs (Optional[Dict[str, Any]]) – Additional keyword arguments,
excluding the learning rate, to pass to the optimizer


	n_critics (int) – Number of critic networks to create.


	share_features_extractor (bool) – Whether to share or not the features extractor
between the actor and the critic (this saves computation time)
















            

          

      

      

    

  

    
      
          
            
  
Atari Wrappers


	
class stable_baselines3.common.atari_wrappers.AtariWrapper(env, noop_max=30, frame_skip=4, screen_size=84, terminal_on_life_loss=True, clip_reward=True, action_repeat_probability=0.0)

	Atari 2600 preprocessings

Specifically:


	Noop reset: obtain initial state by taking random number of no-ops on reset.


	Frame skipping: 4 by default


	Max-pooling: most recent two observations


	Termination signal when a life is lost.


	Resize to a square image: 84x84 by default


	Grayscale observation


	Clip reward to {-1, 0, 1}


	Sticky actions: disabled by default




See https://danieltakeshi.github.io/2016/11/25/frame-skipping-and-preprocessing-for-deep-q-networks-on-atari-2600-games/
for a visual explanation.


Warning

Use this wrapper only with Atari v4 without frame skip: env_id = "*NoFrameskip-v4".




	Parameters:

	
	env (Env) – Environment to wrap


	noop_max (int) – Max number of no-ops


	frame_skip (int) – Frequency at which the agent experiences the game.
This correspond to repeating the action frame_skip times.


	screen_size (int) – Resize Atari frame


	terminal_on_life_loss (bool) – If True, then step() returns done=True whenever a life is lost.


	clip_reward (bool) – If True (default), the reward is clip to {-1, 0, 1} depending on its sign.


	action_repeat_probability (float) – Probability of repeating the last action













	
class stable_baselines3.common.atari_wrappers.ClipRewardEnv(env)

	Clip the reward to {+1, 0, -1} by its sign.


	Parameters:

	env (Env) – Environment to wrap






	
reward(reward)

	Bin reward to {+1, 0, -1} by its sign.


	Parameters:

	reward (SupportsFloat) – 



	Return type:

	float



	Returns:

	














	
class stable_baselines3.common.atari_wrappers.EpisodicLifeEnv(env)

	Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.


	Parameters:

	env (Env) – Environment to wrap






	
reset(**kwargs)

	Calls the Gym environment reset, only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.


	Parameters:

	kwargs – Extra keywords passed to env.reset() call



	Return type:

	Tuple[ndarray, Dict[str, Any]]



	Returns:

	the first observation of the environment










	
step(action)

	Uses the step() of the env that can be overwritten to change the returned data.


	Return type:

	Tuple[ndarray, SupportsFloat, bool, bool, Dict[str, Any]]














	
class stable_baselines3.common.atari_wrappers.FireResetEnv(env)

	Take action on reset for environments that are fixed until firing.


	Parameters:

	env (Env) – Environment to wrap






	
reset(**kwargs)

	Uses the reset() of the env that can be overwritten to change the returned data.


	Return type:

	Tuple[ndarray, Dict[str, Any]]














	
class stable_baselines3.common.atari_wrappers.MaxAndSkipEnv(env, skip=4)

	Return only every skip-th frame (frameskipping)
and return the max between the two last frames.


	Parameters:

	
	env (Env) – Environment to wrap


	skip (int) – Number of skip-th frame
The same action will be taken skip times.









	
step(action)

	Step the environment with the given action
Repeat action, sum reward, and max over last observations.


	Parameters:

	action (int) – the action



	Return type:

	Tuple[ndarray, SupportsFloat, bool, bool, Dict[str, Any]]



	Returns:

	observation, reward, terminated, truncated, information














	
class stable_baselines3.common.atari_wrappers.NoopResetEnv(env, noop_max=30)

	Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.


	Parameters:

	
	env (Env) – Environment to wrap


	noop_max (int) – Maximum value of no-ops to run









	
reset(**kwargs)

	Uses the reset() of the env that can be overwritten to change the returned data.


	Return type:

	Tuple[ndarray, Dict[str, Any]]














	
class stable_baselines3.common.atari_wrappers.StickyActionEnv(env, action_repeat_probability)

	Sticky action.

Paper: https://arxiv.org/abs/1709.06009
Official implementation: https://github.com/mgbellemare/Arcade-Learning-Environment


	Parameters:

	
	env (Env) – Environment to wrap


	action_repeat_probability (float) – Probability of repeating the last action









	
reset(**kwargs)

	Uses the reset() of the env that can be overwritten to change the returned data.


	Return type:

	Tuple[ndarray, Dict[str, Any]]










	
step(action)

	Uses the step() of the env that can be overwritten to change the returned data.


	Return type:

	Tuple[ndarray, SupportsFloat, bool, bool, Dict[str, Any]]














	
class stable_baselines3.common.atari_wrappers.WarpFrame(env, width=84, height=84)

	Convert to grayscale and warp frames to 84x84 (default)
as done in the Nature paper and later work.


	Parameters:

	
	env (Env) – Environment to wrap


	width (int) – New frame width


	height (int) – New frame height









	
observation(frame)

	returns the current observation from a frame


	Parameters:

	frame (ndarray) – environment frame



	Return type:

	ndarray



	Returns:

	the observation
















            

          

      

      

    

  

    
      
          
            
  
Environments Utils


	
stable_baselines3.common.env_util.is_wrapped(env, wrapper_class)

	Check if a given environment has been wrapped with a given wrapper.


	Parameters:

	
	env (Env) – Environment to check


	wrapper_class (Type[Wrapper]) – Wrapper class to look for






	Return type:

	bool



	Returns:

	True if environment has been wrapped with wrapper_class.










	
stable_baselines3.common.env_util.make_atari_env(env_id, n_envs=1, seed=None, start_index=0, monitor_dir=None, wrapper_kwargs=None, env_kwargs=None, vec_env_cls=None, vec_env_kwargs=None, monitor_kwargs=None)

	Create a wrapped, monitored VecEnv for Atari.
It is a wrapper around make_vec_env that includes common preprocessing for Atari games.


	Parameters:

	
	env_id (Union[str, Callable[..., Env]]) – either the env ID, the env class or a callable returning an env


	n_envs (int) – the number of environments you wish to have in parallel


	seed (Optional[int]) – the initial seed for the random number generator


	start_index (int) – start rank index


	monitor_dir (Optional[str]) – Path to a folder where the monitor files will be saved.
If None, no file will be written, however, the env will still be wrapped
in a Monitor wrapper to provide additional information about training.


	wrapper_kwargs (Optional[Dict[str, Any]]) – Optional keyword argument to pass to the AtariWrapper


	env_kwargs (Optional[Dict[str, Any]]) – Optional keyword argument to pass to the env constructor


	vec_env_cls (Union[Type[DummyVecEnv], Type[SubprocVecEnv], None]) – A custom VecEnv class constructor. Default: None.


	vec_env_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the VecEnv class constructor.


	monitor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the Monitor class constructor.






	Return type:

	VecEnv



	Returns:

	The wrapped environment










	
stable_baselines3.common.env_util.make_vec_env(env_id, n_envs=1, seed=None, start_index=0, monitor_dir=None, wrapper_class=None, env_kwargs=None, vec_env_cls=None, vec_env_kwargs=None, monitor_kwargs=None, wrapper_kwargs=None)

	Create a wrapped, monitored VecEnv.
By default it uses a DummyVecEnv which is usually faster
than a SubprocVecEnv.


	Parameters:

	
	env_id (Union[str, Callable[..., Env]]) – either the env ID, the env class or a callable returning an env


	n_envs (int) – the number of environments you wish to have in parallel


	seed (Optional[int]) – the initial seed for the random number generator


	start_index (int) – start rank index


	monitor_dir (Optional[str]) – Path to a folder where the monitor files will be saved.
If None, no file will be written, however, the env will still be wrapped
in a Monitor wrapper to provide additional information about training.


	wrapper_class (Optional[Callable[[Env], Env]]) – Additional wrapper to use on the environment.
This can also be a function with single argument that wraps the environment in many things.
Note: the wrapper specified by this parameter will be applied after the Monitor wrapper.
if some cases (e.g. with TimeLimit wrapper) this can lead to undesired behavior.
See here for more details: https://github.com/DLR-RM/stable-baselines3/issues/894


	env_kwargs (Optional[Dict[str, Any]]) – Optional keyword argument to pass to the env constructor


	vec_env_cls (Optional[Type[Union[DummyVecEnv, SubprocVecEnv]]]) – A custom VecEnv class constructor. Default: None.


	vec_env_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the VecEnv class constructor.


	monitor_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the Monitor class constructor.


	wrapper_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the Wrapper class constructor.






	Return type:

	VecEnv



	Returns:

	The wrapped environment










	
stable_baselines3.common.env_util.unwrap_wrapper(env, wrapper_class)

	Retrieve a VecEnvWrapper object by recursively searching.


	Parameters:

	
	env (Env) – Environment to unwrap


	wrapper_class (Type[Wrapper]) – Wrapper to look for






	Return type:

	Optional[Wrapper]



	Returns:

	Environment unwrapped till wrapper_class if it has been wrapped with it












            

          

      

      

    

  

    
      
          
            
  
Custom Environments

Those environments were created for testing purposes.


BitFlippingEnv


	
class stable_baselines3.common.envs.BitFlippingEnv(n_bits=10, continuous=False, max_steps=None, discrete_obs_space=False, image_obs_space=False, channel_first=True, render_mode='human')

	Simple bit flipping env, useful to test HER.
The goal is to flip all the bits to get a vector of ones.
In the continuous variant, if the ith action component has a value > 0,
then the ith bit will be flipped.


	Parameters:

	
	n_bits (int) – Number of bits to flip


	continuous (bool) – Whether to use the continuous actions version or not,
by default, it uses the discrete one


	max_steps (Optional[int]) – Max number of steps, by default, equal to n_bits


	discrete_obs_space (bool) – Whether to use the discrete observation
version or not, by default, it uses the MultiBinary one


	image_obs_space (bool) – Use image as input instead of the MultiBinary one.


	channel_first (bool) – Whether to use channel-first or last image.









	
close()

	After the user has finished using the environment, close contains the code necessary to “clean up” the environment.

This is critical for closing rendering windows, database or HTTP connections.


	Return type:

	None










	
convert_if_needed(state)

	Convert to discrete space if needed.


	Parameters:

	state (ndarray) – 



	Return type:

	Union[int, ndarray]



	Returns:

	










	
convert_to_bit_vector(state, batch_size)

	Convert to bit vector if needed.


	Parameters:

	
	state (Union[int, ndarray]) – The state to be converted, which can be either an integer or a numpy array.


	batch_size (int) – The batch size.






	Return type:

	ndarray



	Returns:

	The state converted into a bit vector.










	
render()

	Compute the render frames as specified by render_mode during the initialization of the environment.

The environment’s metadata render modes (env.metadata[“render_modes”]) should contain the possible
ways to implement the render modes. In addition, list versions for most render modes is achieved through
gymnasium.make which automatically applies a wrapper to collect rendered frames.


	Return type:

	Optional[ndarray]






	Note:
	As the render_mode is known during __init__, the objects used to render the environment state
should be initialised in __init__.





By convention, if the render_mode is:


	None (default): no render is computed.


	“human”: The environment is continuously rendered in the current display or terminal, usually for human consumption.
This rendering should occur during step() and render() doesn’t need to be called. Returns None.


	“rgb_array”: Return a single frame representing the current state of the environment.
A frame is a np.ndarray with shape (x, y, 3) representing RGB values for an x-by-y pixel image.


	“ansi”: Return a strings (str) or StringIO.StringIO containing a terminal-style text representation
for each time step. The text can include newlines and ANSI escape sequences (e.g. for colors).


	“rgb_array_list” and “ansi_list”: List based version of render modes are possible (except Human) through the
wrapper, gymnasium.wrappers.RenderCollection that is automatically applied during gymnasium.make(..., render_mode="rgb_array_list").
The frames collected are popped after render() is called or reset().





	Note:
	Make sure that your class’s metadata "render_modes" key includes the list of supported modes.






Changed in version 0.25.0: The render function was changed to no longer accept parameters, rather these parameters should be specified
in the environment initialised, i.e., gymnasium.make("CartPole-v1", render_mode="human")








	
reset(*, seed=None, options=None)

	Resets the environment to an initial internal state, returning an initial observation and info.

This method generates a new starting state often with some randomness to ensure that the agent explores the
state space and learns a generalised policy about the environment. This randomness can be controlled
with the seed parameter otherwise if the environment already has a random number generator and
reset() is called with seed=None, the RNG is not reset.

Therefore, reset() should (in the typical use case) be called with a seed right after initialization and then never again.

For Custom environments, the first line of reset() should be super().reset(seed=seed) which implements
the seeding correctly.
:rtype: Tuple[Dict[str, Union[int, ndarray]], Dict]


Changed in version v0.25: The return_info parameter was removed and now info is expected to be returned.




	Args:
	
	seed (optional int): The seed that is used to initialize the environment’s PRNG (np_random).
	If the environment does not already have a PRNG and seed=None (the default option) is passed,
a seed will be chosen from some source of entropy (e.g. timestamp or /dev/urandom).
However, if the environment already has a PRNG and seed=None is passed, the PRNG will not be reset.
If you pass an integer, the PRNG will be reset even if it already exists.
Usually, you want to pass an integer right after the environment has been initialized and then never again.
Please refer to the minimal example above to see this paradigm in action.



	options (optional dict): Additional information to specify how the environment is reset (optional,
	depending on the specific environment)







	Returns:
	
	observation (ObsType): Observation of the initial state. This will be an element of observation_space
	(typically a numpy array) and is analogous to the observation returned by step().



	info (dictionary):  This dictionary contains auxiliary information complementing observation. It should be analogous to
	the info returned by step().














	
step(action)

	Step into the env.


	Parameters:

	action (Union[ndarray, int]) – 



	Return type:

	Tuple[Union[Tuple, Dict[str, Any], ndarray, int], float, bool, bool, Dict]



	Returns:

	















SimpleMultiObsEnv


	
class stable_baselines3.common.envs.SimpleMultiObsEnv(num_col=4, num_row=4, random_start=True, discrete_actions=True, channel_last=True)

	Base class for GridWorld-based MultiObs Environments 4x4  grid world.

 ____________
| 0  1  2   3|
| 4|¯5¯¯6¯| 7|
| 8|_9_10_|11|
|12 13  14 15|
¯¯¯¯¯¯¯¯¯¯¯¯¯¯





start is 0
states 5, 6, 9, and 10 are blocked
goal is 15
actions are = [left, down, right, up]

simple linear state env of 15 states but encoded with a vector and an image observation:
each column is represented by a random vector and each row is
represented by a random image, both sampled once at creation time.


	Parameters:

	
	num_col (int) – Number of columns in the grid


	num_row (int) – Number of rows in the grid


	random_start (bool) – If true, agent starts in random position


	channel_last (bool) – If true, the image will be channel last, else it will be channel first









	
get_state_mapping()

	Uses the state to get the observation mapping.


	Return type:

	Dict[str, ndarray]



	Returns:

	observation dict {‘vec’: …, ‘img’: …}










	
init_possible_transitions()

	Initializes the transitions of the environment
The environment exploits the cardinal directions of the grid by noting that
they correspond to simple addition and subtraction from the cell id within the grid
:rtype: None


	up => means moving up a row => means subtracting the length of a column


	down => means moving down a row => means adding the length of a column


	left => means moving left by one => means subtracting 1


	right => means moving right by one => means adding 1




Thus one only needs to specify in which states each action is possible
in order to define the transitions of the environment






	
init_state_mapping(num_col, num_row)

	Initializes the state_mapping array which holds the observation values for each state


	Parameters:

	
	num_col (int) – Number of columns.


	num_row (int) – Number of rows.






	Return type:

	None










	
render(mode='human')

	Prints the log of the environment.


	Parameters:

	mode (str) – 



	Return type:

	None










	
reset(*, seed=None, options=None)

	Resets the environment state and step count and returns reset observation.


	Parameters:

	seed (Optional[int]) – 



	Return type:

	Tuple[Dict[str, ndarray], Dict]



	Returns:

	observation dict {‘vec’: …, ‘img’: …}










	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.
Accepts an action and returns a tuple (observation, reward, terminated, truncated, info).


	Parameters:

	action (Union[int, ndarray]) – 



	Return type:

	Tuple[Union[Tuple, Dict[str, Any], ndarray, int], float, bool, bool, Dict]



	Returns:

	tuple (observation, reward, terminated, truncated, info).

















            

          

      

      

    

  

    
      
          
            
  
Probability Distributions

Probability distributions used for the different action spaces:


	CategoricalDistribution -> Discrete


	DiagGaussianDistribution -> Box (continuous actions)


	StateDependentNoiseDistribution -> Box (continuous actions) when use_sde=True




The policy networks output parameters for the distributions (named flat in the methods).
Actions are then sampled from those distributions.

For instance, in the case of discrete actions. The policy network outputs probability
of taking each action. The CategoricalDistribution allows to sample from it,
computes the entropy, the log probability (log_prob) and backpropagate the gradient.

In the case of continuous actions, a Gaussian distribution is used. The policy network outputs
mean and (log) std of the distribution (assumed to be a DiagGaussianDistribution).

Probability distributions.


	
class stable_baselines3.common.distributions.BernoulliDistribution(action_dims)

	Bernoulli distribution for MultiBinary action spaces.


	Parameters:

	action_dim – Number of binary actions






	
actions_from_params(action_logits, deterministic=False)

	Returns samples from the probability distribution
given its parameters.


	Return type:

	Tensor



	Returns:

	actions










	
entropy()

	Returns Shannon’s entropy of the probability


	Return type:

	Tensor



	Returns:

	the entropy, or None if no analytical form is known










	
log_prob(actions)

	Returns the log likelihood


	Parameters:

	x – the taken action



	Return type:

	Tensor



	Returns:

	The log likelihood of the distribution










	
log_prob_from_params(action_logits)

	Returns samples and the associated log probabilities
from the probability distribution given its parameters.


	Return type:

	Tuple[Tensor, Tensor]



	Returns:

	actions and log prob










	
mode()

	Returns the most likely action (deterministic output)
from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action










	
proba_distribution(action_logits)

	Set parameters of the distribution.


	Return type:

	TypeVar(SelfBernoulliDistribution, bound= BernoulliDistribution)



	Returns:

	self










	
proba_distribution_net(latent_dim)

	Create the layer that represents the distribution:
it will be the logits of the Bernoulli distribution.


	Parameters:

	latent_dim (int) – Dimension of the last layer
of the policy network (before the action layer)



	Return type:

	Module



	Returns:

	










	
sample()

	Returns a sample from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action














	
class stable_baselines3.common.distributions.CategoricalDistribution(action_dim)

	Categorical distribution for discrete actions.


	Parameters:

	action_dim (int) – Number of discrete actions






	
actions_from_params(action_logits, deterministic=False)

	Returns samples from the probability distribution
given its parameters.


	Return type:

	Tensor



	Returns:

	actions










	
entropy()

	Returns Shannon’s entropy of the probability


	Return type:

	Tensor



	Returns:

	the entropy, or None if no analytical form is known










	
log_prob(actions)

	Returns the log likelihood


	Parameters:

	x – the taken action



	Return type:

	Tensor



	Returns:

	The log likelihood of the distribution










	
log_prob_from_params(action_logits)

	Returns samples and the associated log probabilities
from the probability distribution given its parameters.


	Return type:

	Tuple[Tensor, Tensor]



	Returns:

	actions and log prob










	
mode()

	Returns the most likely action (deterministic output)
from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action










	
proba_distribution(action_logits)

	Set parameters of the distribution.


	Return type:

	TypeVar(SelfCategoricalDistribution, bound= CategoricalDistribution)



	Returns:

	self










	
proba_distribution_net(latent_dim)

	Create the layer that represents the distribution:
it will be the logits of the Categorical distribution.
You can then get probabilities using a softmax.


	Parameters:

	latent_dim (int) – Dimension of the last layer
of the policy network (before the action layer)



	Return type:

	Module



	Returns:

	










	
sample()

	Returns a sample from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action














	
class stable_baselines3.common.distributions.DiagGaussianDistribution(action_dim)

	Gaussian distribution with diagonal covariance matrix, for continuous actions.


	Parameters:

	action_dim (int) – Dimension of the action space.






	
actions_from_params(mean_actions, log_std, deterministic=False)

	Returns samples from the probability distribution
given its parameters.


	Return type:

	Tensor



	Returns:

	actions










	
entropy()

	Returns Shannon’s entropy of the probability


	Return type:

	Tensor



	Returns:

	the entropy, or None if no analytical form is known










	
log_prob(actions)

	Get the log probabilities of actions according to the distribution.
Note that you must first call the proba_distribution() method.


	Parameters:

	actions (Tensor) – 



	Return type:

	Tensor



	Returns:

	










	
log_prob_from_params(mean_actions, log_std)

	Compute the log probability of taking an action
given the distribution parameters.


	Parameters:

	
	mean_actions (Tensor) – 


	log_std (Tensor) – 






	Return type:

	Tuple[Tensor, Tensor]



	Returns:

	










	
mode()

	Returns the most likely action (deterministic output)
from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action










	
proba_distribution(mean_actions, log_std)

	Create the distribution given its parameters (mean, std)


	Parameters:

	
	mean_actions (Tensor) – 


	log_std (Tensor) – 






	Return type:

	TypeVar(SelfDiagGaussianDistribution, bound= DiagGaussianDistribution)



	Returns:

	










	
proba_distribution_net(latent_dim, log_std_init=0.0)

	Create the layers and parameter that represent the distribution:
one output will be the mean of the Gaussian, the other parameter will be the
standard deviation (log std in fact to allow negative values)


	Parameters:

	
	latent_dim (int) – Dimension of the last layer of the policy (before the action layer)


	log_std_init (float) – Initial value for the log standard deviation






	Return type:

	Tuple[Module, Parameter]



	Returns:

	










	
sample()

	Returns a sample from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action














	
class stable_baselines3.common.distributions.Distribution

	Abstract base class for distributions.


	
abstract actions_from_params(*args, **kwargs)

	Returns samples from the probability distribution
given its parameters.


	Return type:

	Tensor



	Returns:

	actions










	
abstract entropy()

	Returns Shannon’s entropy of the probability


	Return type:

	Optional[Tensor]



	Returns:

	the entropy, or None if no analytical form is known










	
get_actions(deterministic=False)

	Return actions according to the probability distribution.


	Parameters:

	deterministic (bool) – 



	Return type:

	Tensor



	Returns:

	










	
abstract log_prob(x)

	Returns the log likelihood


	Parameters:

	x (Tensor) – the taken action



	Return type:

	Tensor



	Returns:

	The log likelihood of the distribution










	
abstract log_prob_from_params(*args, **kwargs)

	Returns samples and the associated log probabilities
from the probability distribution given its parameters.


	Return type:

	Tuple[Tensor, Tensor]



	Returns:

	actions and log prob










	
abstract mode()

	Returns the most likely action (deterministic output)
from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action










	
abstract proba_distribution(*args, **kwargs)

	Set parameters of the distribution.


	Return type:

	TypeVar(SelfDistribution, bound= Distribution)



	Returns:

	self










	
abstract proba_distribution_net(*args, **kwargs)

	Create the layers and parameters that represent the distribution.

Subclasses must define this, but the arguments and return type vary between
concrete classes.


	Return type:

	Union[Module, Tuple[Module, Parameter]]










	
abstract sample()

	Returns a sample from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action














	
class stable_baselines3.common.distributions.MultiCategoricalDistribution(action_dims)

	MultiCategorical distribution for multi discrete actions.


	Parameters:

	action_dims (List[int]) – List of sizes of discrete action spaces






	
actions_from_params(action_logits, deterministic=False)

	Returns samples from the probability distribution
given its parameters.


	Return type:

	Tensor



	Returns:

	actions










	
entropy()

	Returns Shannon’s entropy of the probability


	Return type:

	Tensor



	Returns:

	the entropy, or None if no analytical form is known










	
log_prob(actions)

	Returns the log likelihood


	Parameters:

	x – the taken action



	Return type:

	Tensor



	Returns:

	The log likelihood of the distribution










	
log_prob_from_params(action_logits)

	Returns samples and the associated log probabilities
from the probability distribution given its parameters.


	Return type:

	Tuple[Tensor, Tensor]



	Returns:

	actions and log prob










	
mode()

	Returns the most likely action (deterministic output)
from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action










	
proba_distribution(action_logits)

	Set parameters of the distribution.


	Return type:

	TypeVar(SelfMultiCategoricalDistribution, bound= MultiCategoricalDistribution)



	Returns:

	self










	
proba_distribution_net(latent_dim)

	Create the layer that represents the distribution:
it will be the logits (flattened) of the MultiCategorical distribution.
You can then get probabilities using a softmax on each sub-space.


	Parameters:

	latent_dim (int) – Dimension of the last layer
of the policy network (before the action layer)



	Return type:

	Module



	Returns:

	










	
sample()

	Returns a sample from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action














	
class stable_baselines3.common.distributions.SquashedDiagGaussianDistribution(action_dim, epsilon=1e-06)

	Gaussian distribution with diagonal covariance matrix, followed by a squashing function (tanh) to ensure bounds.


	Parameters:

	
	action_dim (int) – Dimension of the action space.


	epsilon (float) – small value to avoid NaN due to numerical imprecision.









	
entropy()

	Returns Shannon’s entropy of the probability


	Return type:

	Optional[Tensor]



	Returns:

	the entropy, or None if no analytical form is known










	
log_prob(actions, gaussian_actions=None)

	Get the log probabilities of actions according to the distribution.
Note that you must first call the proba_distribution() method.


	Parameters:

	actions (Tensor) – 



	Return type:

	Tensor



	Returns:

	










	
log_prob_from_params(mean_actions, log_std)

	Compute the log probability of taking an action
given the distribution parameters.


	Parameters:

	
	mean_actions (Tensor) – 


	log_std (Tensor) – 






	Return type:

	Tuple[Tensor, Tensor]



	Returns:

	










	
mode()

	Returns the most likely action (deterministic output)
from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action










	
proba_distribution(mean_actions, log_std)

	Create the distribution given its parameters (mean, std)


	Parameters:

	
	mean_actions (Tensor) – 


	log_std (Tensor) – 






	Return type:

	TypeVar(SelfSquashedDiagGaussianDistribution, bound= SquashedDiagGaussianDistribution)



	Returns:

	










	
sample()

	Returns a sample from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action














	
class stable_baselines3.common.distributions.StateDependentNoiseDistribution(action_dim, full_std=True, use_expln=False, squash_output=False, learn_features=False, epsilon=1e-06)

	Distribution class for using generalized State Dependent Exploration (gSDE).
Paper: https://arxiv.org/abs/2005.05719

It is used to create the noise exploration matrix and
compute the log probability of an action with that noise.


	Parameters:

	
	action_dim (int) – Dimension of the action space.


	full_std (bool) – Whether to use (n_features x n_actions) parameters
for the std instead of only (n_features,)


	use_expln (bool) – Use expln() function instead of exp() to ensure
a positive standard deviation (cf paper). It allows to keep variance
above zero and prevent it from growing too fast. In practice, exp() is usually enough.


	squash_output (bool) – Whether to squash the output using a tanh function,
this ensures bounds are satisfied.


	learn_features (bool) – Whether to learn features for gSDE or not.
This will enable gradients to be backpropagated through the features
latent_sde in the code.


	epsilon (float) – small value to avoid NaN due to numerical imprecision.









	
actions_from_params(mean_actions, log_std, latent_sde, deterministic=False)

	Returns samples from the probability distribution
given its parameters.


	Return type:

	Tensor



	Returns:

	actions










	
entropy()

	Returns Shannon’s entropy of the probability


	Return type:

	Optional[Tensor]



	Returns:

	the entropy, or None if no analytical form is known










	
get_std(log_std)

	Get the standard deviation from the learned parameter
(log of it by default). This ensures that the std is positive.


	Parameters:

	log_std (Tensor) – 



	Return type:

	Tensor



	Returns:

	










	
log_prob(actions)

	Returns the log likelihood


	Parameters:

	x – the taken action



	Return type:

	Tensor



	Returns:

	The log likelihood of the distribution










	
log_prob_from_params(mean_actions, log_std, latent_sde)

	Returns samples and the associated log probabilities
from the probability distribution given its parameters.


	Return type:

	Tuple[Tensor, Tensor]



	Returns:

	actions and log prob










	
mode()

	Returns the most likely action (deterministic output)
from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action










	
proba_distribution(mean_actions, log_std, latent_sde)

	Create the distribution given its parameters (mean, std)


	Parameters:

	
	mean_actions (Tensor) – 


	log_std (Tensor) – 


	latent_sde (Tensor) – 






	Return type:

	TypeVar(SelfStateDependentNoiseDistribution, bound= StateDependentNoiseDistribution)



	Returns:

	










	
proba_distribution_net(latent_dim, log_std_init=-2.0, latent_sde_dim=None)

	Create the layers and parameter that represent the distribution:
one output will be the deterministic action, the other parameter will be the
standard deviation of the distribution that control the weights of the noise matrix.


	Parameters:

	
	latent_dim (int) – Dimension of the last layer of the policy (before the action layer)


	log_std_init (float) – Initial value for the log standard deviation


	latent_sde_dim (Optional[int]) – Dimension of the last layer of the features extractor
for gSDE. By default, it is shared with the policy network.






	Return type:

	Tuple[Module, Parameter]



	Returns:

	










	
sample()

	Returns a sample from the probability distribution


	Return type:

	Tensor



	Returns:

	the stochastic action










	
sample_weights(log_std, batch_size=1)

	Sample weights for the noise exploration matrix,
using a centered Gaussian distribution.


	Parameters:

	
	log_std (Tensor) – 


	batch_size (int) – 






	Return type:

	None














	
class stable_baselines3.common.distributions.TanhBijector(epsilon=1e-06)

	Bijective transformation of a probability distribution
using a squashing function (tanh)


	Parameters:

	epsilon (float) – small value to avoid NaN due to numerical imprecision.






	
static atanh(x)

	Inverse of Tanh

Taken from Pyro: https://github.com/pyro-ppl/pyro
0.5 * torch.log((1 + x ) / (1 - x))


	Return type:

	Tensor










	
static inverse(y)

	Inverse tanh.


	Parameters:

	y (Tensor) – 



	Return type:

	Tensor



	Returns:

	














	
stable_baselines3.common.distributions.kl_divergence(dist_true, dist_pred)

	Wrapper for the PyTorch implementation of the full form KL Divergence


	Parameters:

	
	dist_true (Distribution) – the p distribution


	dist_pred (Distribution) – the q distribution






	Return type:

	Tensor



	Returns:

	KL(dist_true||dist_pred)










	
stable_baselines3.common.distributions.make_proba_distribution(action_space, use_sde=False, dist_kwargs=None)

	Return an instance of Distribution for the correct type of action space


	Parameters:

	
	action_space (Space) – the input action space


	use_sde (bool) – Force the use of StateDependentNoiseDistribution
instead of DiagGaussianDistribution


	dist_kwargs (Optional[Dict[str, Any]]) – Keyword arguments to pass to the probability distribution






	Return type:

	Distribution



	Returns:

	the appropriate Distribution object










	
stable_baselines3.common.distributions.sum_independent_dims(tensor)

	Continuous actions are usually considered to be independent,
so we can sum components of the log_prob or the entropy.


	Parameters:

	tensor (Tensor) – shape: (n_batch, n_actions) or (n_batch,)



	Return type:

	Tensor



	Returns:

	shape: (n_batch,)












            

          

      

      

    

  

    
      
          
            
  
Evaluation Helper


	
stable_baselines3.common.evaluation.evaluate_policy(model, env, n_eval_episodes=10, deterministic=True, render=False, callback=None, reward_threshold=None, return_episode_rewards=False, warn=True)

	Runs policy for n_eval_episodes episodes and returns average reward.
If a vector env is passed in, this divides the episodes to evaluate onto the
different elements of the vector env. This static division of work is done to
remove bias. See https://github.com/DLR-RM/stable-baselines3/issues/402 for more
details and discussion.


Note

If environment has not been wrapped with Monitor wrapper, reward and
episode lengths are counted as it appears with env.step calls. If
the environment contains wrappers that modify rewards or episode lengths
(e.g. reward scaling, early episode reset), these will affect the evaluation
results as well. You can avoid this by wrapping environment with Monitor
wrapper before anything else.




	Parameters:

	
	model (PolicyPredictor) – The RL agent you want to evaluate. This can be any object
that implements a predict method, such as an RL algorithm (BaseAlgorithm)
or policy (BasePolicy).


	env (Union[Env, VecEnv]) – The gym environment or VecEnv environment.


	n_eval_episodes (int) – Number of episode to evaluate the agent


	deterministic (bool) – Whether to use deterministic or stochastic actions


	render (bool) – Whether to render the environment or not


	callback (Optional[Callable[[Dict[str, Any], Dict[str, Any]], None]]) – callback function to do additional checks,
called after each step. Gets locals() and globals() passed as parameters.


	reward_threshold (Optional[float]) – Minimum expected reward per episode,
this will raise an error if the performance is not met


	return_episode_rewards (bool) – If True, a list of rewards and episode lengths
per episode will be returned instead of the mean.


	warn (bool) – If True (default), warns user about lack of a Monitor wrapper in the
evaluation environment.






	Return type:

	Union[Tuple[float, float], Tuple[List[float], List[int]]]



	Returns:

	Mean reward per episode, std of reward per episode.
Returns ([float], [int]) when return_episode_rewards is True, first
list containing per-episode rewards and second containing per-episode lengths
(in number of steps).












            

          

      

      

    

  

    
      
          
            
  
Gym Environment Checker


	
stable_baselines3.common.env_checker.check_env(env, warn=True, skip_render_check=True)

	Check that an environment follows Gym API.
This is particularly useful when using a custom environment.
Please take a look at https://gymnasium.farama.org/api/env/
for more information about the API.

It also optionally check that the environment is compatible with Stable-Baselines.


	Parameters:

	
	env (Env) – The Gym environment that will be checked


	warn (bool) – Whether to output additional warnings
mainly related to the interaction with Stable Baselines


	skip_render_check (bool) – Whether to skip the checks for the render method.
True by default (useful for the CI)






	Return type:

	None












            

          

      

      

    

  

    
      
          
            
  
Monitor Wrapper


	
class stable_baselines3.common.monitor.Monitor(env, filename=None, allow_early_resets=True, reset_keywords=(), info_keywords=(), override_existing=True)

	A monitor wrapper for Gym environments, it is used to know the episode reward, length, time and other data.


	Parameters:

	
	env (Env) – The environment


	filename (Optional[str]) – the location to save a log file, can be None for no log


	allow_early_resets (bool) – allows the reset of the environment before it is done


	reset_keywords (Tuple[str, ...]) – extra keywords for the reset call,
if extra parameters are needed at reset


	info_keywords (Tuple[str, ...]) – extra information to log, from the information return of env.step()


	override_existing (bool) – appends to file if filename exists, otherwise
override existing files (default)









	
close()

	Closes the environment


	Return type:

	None










	
get_episode_lengths()

	Returns the number of timesteps of all the episodes


	Return type:

	List[int]



	Returns:

	










	
get_episode_rewards()

	Returns the rewards of all the episodes


	Return type:

	List[float]



	Returns:

	










	
get_episode_times()

	Returns the runtime in seconds of all the episodes


	Return type:

	List[float]



	Returns:

	










	
get_total_steps()

	Returns the total number of timesteps


	Return type:

	int



	Returns:

	










	
reset(**kwargs)

	Calls the Gym environment reset. Can only be called if the environment is over, or if allow_early_resets is True


	Parameters:

	kwargs – Extra keywords saved for the next episode. only if defined by reset_keywords



	Return type:

	Tuple[TypeVar(ObsType), Dict[str, Any]]



	Returns:

	the first observation of the environment










	
step(action)

	Step the environment with the given action


	Parameters:

	action (TypeVar(ActType)) – the action



	Return type:

	Tuple[TypeVar(ObsType), SupportsFloat, bool, bool, Dict[str, Any]]



	Returns:

	observation, reward, terminated, truncated, information














	
class stable_baselines3.common.monitor.ResultsWriter(filename='', header=None, extra_keys=(), override_existing=True)

	A result writer that saves the data from the Monitor class


	Parameters:

	
	filename (str) – the location to save a log file. When it does not end in
the string "monitor.csv", this suffix will be appended to it


	header (Optional[Dict[str, Union[float, str]]]) – the header dictionary object of the saved csv


	extra_keys (Tuple[str, ...]) – the extra information to log, typically is composed of
reset_keywords and info_keywords


	override_existing (bool) – appends to file if filename exists, otherwise
override existing files (default)









	
close()

	Close the file handler


	Return type:

	None










	
write_row(epinfo)

	Write row of monitor data to csv log file.


	Parameters:

	epinfo (Dict[str, float]) – the information on episodic return, length, and time



	Return type:

	None














	
stable_baselines3.common.monitor.get_monitor_files(path)

	get all the monitor files in the given path


	Parameters:

	path (str) – the logging folder



	Return type:

	List[str]



	Returns:

	the log files










	
stable_baselines3.common.monitor.load_results(path)

	Load all Monitor logs from a given directory path matching *monitor.csv


	Parameters:

	path (str) – the directory path containing the log file(s)



	Return type:

	DataFrame



	Returns:

	the logged data












            

          

      

      

    

  

    
      
          
            
  
Logger

To overwrite the default logger, you can pass one to the algorithm.
Available formats are ["stdout", "csv", "log", "tensorboard", "json"].


Warning

When passing a custom logger object,
this will overwrite tensorboard_log and verbose settings
passed to the constructor.



from stable_baselines3 import A2C
from stable_baselines3.common.logger import configure

tmp_path = "/tmp/sb3_log/"
# set up logger
new_logger = configure(tmp_path, ["stdout", "csv", "tensorboard"])

model = A2C("MlpPolicy", "CartPole-v1", verbose=1)
# Set new logger
model.set_logger(new_logger)
model.learn(10000)






Explanation of logger output

You can find below short explanations of the values logged in Stable-Baselines3 (SB3).
Depending on the algorithm used and of the wrappers/callbacks applied, SB3 only logs a subset of those keys during training.

Below you can find an example of the logger output when training a PPO agent:

-----------------------------------------
| eval/                   |             |
|    mean_ep_length       | 200         |
|    mean_reward          | -157        |
| rollout/                |             |
|    ep_len_mean          | 200         |
|    ep_rew_mean          | -227        |
| time/                   |             |
|    fps                  | 972         |
|    iterations           | 19          |
|    time_elapsed         | 80          |
|    total_timesteps      | 77824       |
| train/                  |             |
|    approx_kl            | 0.037781604 |
|    clip_fraction        | 0.243       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.06       |
|    explained_variance   | 0.999       |
|    learning_rate        | 0.001       |
|    loss                 | 0.245       |
|    n_updates            | 180         |
|    policy_gradient_loss | -0.00398    |
|    std                  | 0.205       |
|    value_loss           | 0.226       |
-----------------------------------------






eval/

All eval/ values are computed by the EvalCallback.


	mean_ep_length: Mean episode length


	mean_reward: Mean episodic reward (during evaluation)


	success_rate: Mean success rate during evaluation (1.0 means 100% success), the environment info dict must contain an is_success key to compute that value






rollout/


	ep_len_mean: Mean episode length (averaged over stats_window_size episodes, 100 by default)


	ep_rew_mean: Mean episodic training reward (averaged over stats_window_size episodes, 100 by default), a Monitor wrapper is required to compute that value (automatically added by make_vec_env).


	exploration_rate: Current value of the exploration rate when using DQN, it corresponds to the fraction of actions taken randomly (epsilon of the “epsilon-greedy” exploration)


	success_rate: Mean success rate during training (averaged over stats_window_size episodes, 100 by default), you must pass an extra argument to the Monitor wrapper to log that value (info_keywords=("is_success",)) and provide info["is_success"]=True/False on the final step of the episode






time/


	episodes: Total number of episodes


	fps: Number of frames per seconds (includes time taken by gradient update)


	iterations: Number of iterations (data collection + policy update for A2C/PPO)


	time_elapsed: Time in seconds since the beginning of training


	total_timesteps: Total number of timesteps (steps in the environments)






train/


	actor_loss: Current value for the actor loss for off-policy algorithms


	approx_kl: approximate mean KL divergence between old and new policy (for PPO), it is an estimation of how much changes happened in the update


	clip_fraction: mean fraction of surrogate loss that was clipped (above clip_range threshold) for PPO.


	clip_range: Current value of the clipping factor for the surrogate loss of PPO


	critic_loss: Current value for the critic function loss for off-policy algorithms, usually error between value function output and TD(0), temporal difference estimate


	ent_coef: Current value of the entropy coefficient (when using SAC)


	ent_coef_loss: Current value of the entropy coefficient loss (when using SAC)


	entropy_loss: Mean value of the entropy loss (negative of the average policy entropy)


	explained_variance: Fraction of the return variance explained by the value function, see https://scikit-learn.org/stable/modules/model_evaluation.html#explained-variance-score
(ev=0 => might as well have predicted zero, ev=1 => perfect prediction, ev<0 => worse than just predicting zero)


	learning_rate: Current learning rate value


	loss: Current total loss value


	n_updates: Number of gradient updates applied so far


	policy_gradient_loss: Current value of the policy gradient loss (its value does not have much meaning)


	value_loss: Current value for the value function loss for on-policy algorithms, usually error between value function output and Monte-Carlo estimate (or TD(lambda) estimate)


	std: Current standard deviation of the noise when using generalized State-Dependent Exploration (gSDE)





	
class stable_baselines3.common.logger.CSVOutputFormat(filename)

	Log to a file, in a CSV format


	Parameters:

	filename (str) – the file to write the log to






	
close()

	closes the file


	Return type:

	None










	
write(key_values, key_excluded, step=0)

	Write a dictionary to file


	Parameters:

	
	key_values (Dict[str, Any]) – 


	key_excluded (Dict[str, Tuple[str, ...]]) – 


	step (int) – 






	Return type:

	None














	
class stable_baselines3.common.logger.Figure(figure, close)

	Figure data class storing a matplotlib figure and whether to close the figure after logging it


	Parameters:

	
	figure (figure) – figure to log


	close (bool) – if true, close the figure after logging it













	
exception stable_baselines3.common.logger.FormatUnsupportedError(unsupported_formats, value_description)

	Custom error to display informative message when
a value is not supported by some formats.


	Parameters:

	
	unsupported_formats (Sequence[str]) – A sequence of unsupported formats,
for instance ["stdout"].


	value_description (str) – Description of the value that cannot be logged by this format.













	
class stable_baselines3.common.logger.HParam(hparam_dict, metric_dict)

	Hyperparameter data class storing hyperparameters and metrics in dictionaries


	Parameters:

	
	hparam_dict (Mapping[str, Union[bool, str, float, None]]) – key-value pairs of hyperparameters to log


	metric_dict (Mapping[str, float]) – key-value pairs of metrics to log
A non-empty metrics dict is required to display hyperparameters in the corresponding Tensorboard section.













	
class stable_baselines3.common.logger.HumanOutputFormat(filename_or_file, max_length=36)

	A human-readable output format producing ASCII tables of key-value pairs.

Set attribute max_length to change the maximum length of keys and values
to write to output (or specify it when calling __init__).


	Parameters:

	
	filename_or_file (Union[str, TextIO]) – the file to write the log to


	max_length (int) – the maximum length of keys and values to write to output.
Outputs longer than this will be truncated. An error will be raised
if multiple keys are truncated to the same value. The maximum output
width will be 2*max_length + 7. The default of 36 produces output
no longer than 79 characters wide.









	
close()

	closes the file


	Return type:

	None










	
write(key_values, key_excluded, step=0)

	Write a dictionary to file


	Parameters:

	
	key_values (Dict[str, Any]) – 


	key_excluded (Dict[str, Tuple[str, ...]]) – 


	step (int) – 






	Return type:

	None










	
write_sequence(sequence)

	write_sequence an array to file


	Parameters:

	sequence (List[str]) – 



	Return type:

	None














	
class stable_baselines3.common.logger.Image(image, dataformats)

	Image data class storing an image and data format


	Parameters:

	
	image (Union[Tensor, ndarray, str]) – image to log


	dataformats (str) – Image data format specification of the form NCHW, NHWC, CHW, HWC, HW, WH, etc.
More info in add_image method doc at https://pytorch.org/docs/stable/tensorboard.html
Gym envs normally use ‘HWC’ (channel last)













	
class stable_baselines3.common.logger.JSONOutputFormat(filename)

	Log to a file, in the JSON format


	Parameters:

	filename (str) – the file to write the log to






	
close()

	closes the file


	Return type:

	None










	
write(key_values, key_excluded, step=0)

	Write a dictionary to file


	Parameters:

	
	key_values (Dict[str, Any]) – 


	key_excluded (Dict[str, Tuple[str, ...]]) – 


	step (int) – 






	Return type:

	None














	
class stable_baselines3.common.logger.KVWriter

	Key Value writer


	
close()

	Close owned resources


	Return type:

	None










	
write(key_values, key_excluded, step=0)

	Write a dictionary to file


	Parameters:

	
	key_values (Dict[str, Any]) – 


	key_excluded (Dict[str, Tuple[str, ...]]) – 


	step (int) – 






	Return type:

	None














	
class stable_baselines3.common.logger.Logger(folder, output_formats)

	The logger class.


	Parameters:

	
	folder (Optional[str]) – the logging location


	output_formats (List[KVWriter]) – the list of output formats









	
close()

	closes the file


	Return type:

	None










	
debug(*args)

	Write the sequence of args, with no separators,
to the console and output files (if you’ve configured an output file).
Using the DEBUG level.


	Parameters:

	args – log the arguments



	Return type:

	None










	
dump(step=0)

	Write all of the diagnostics from the current iteration


	Return type:

	None










	
error(*args)

	Write the sequence of args, with no separators,
to the console and output files (if you’ve configured an output file).
Using the ERROR level.


	Parameters:

	args – log the arguments



	Return type:

	None










	
get_dir()

	Get directory that log files are being written to.
will be None if there is no output directory (i.e., if you didn’t call start)


	Return type:

	Optional[str]



	Returns:

	the logging directory










	
info(*args)

	Write the sequence of args, with no separators,
to the console and output files (if you’ve configured an output file).
Using the INFO level.


	Parameters:

	args – log the arguments



	Return type:

	None










	
log(*args, level=20)

	Write the sequence of args, with no separators,
to the console and output files (if you’ve configured an output file).


	level: int. (see logger.py docs) If the global logger level is higher than
	the level argument here, don’t print to stdout.






	Parameters:

	
	args – log the arguments


	level (int) – the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50)






	Return type:

	None










	
record(key, value, exclude=None)

	Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
If called many times, last value will be used.


	Parameters:

	
	key (str) – save to log this key


	value (Any) – save to log this value


	exclude (Union[str, Tuple[str, ...], None]) – outputs to be excluded






	Return type:

	None










	
record_mean(key, value, exclude=None)

	The same as record(), but if called many times, values averaged.


	Parameters:

	
	key (str) – save to log this key


	value (Optional[float]) – save to log this value


	exclude (Union[str, Tuple[str, ...], None]) – outputs to be excluded






	Return type:

	None










	
set_level(level)

	Set logging threshold on current logger.


	Parameters:

	level (int) – the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50)



	Return type:

	None










	
static to_tuple(string_or_tuple)

	Helper function to convert str to tuple of str.


	Return type:

	Tuple[str, ...]










	
warn(*args)

	Write the sequence of args, with no separators,
to the console and output files (if you’ve configured an output file).
Using the WARN level.


	Parameters:

	args – log the arguments



	Return type:

	None














	
class stable_baselines3.common.logger.SeqWriter

	sequence writer


	
write_sequence(sequence)

	write_sequence an array to file


	Parameters:

	sequence (List[str]) – 



	Return type:

	None














	
class stable_baselines3.common.logger.TensorBoardOutputFormat(folder)

	Dumps key/value pairs into TensorBoard’s numeric format.


	Parameters:

	folder (str) – the folder to write the log to






	
close()

	closes the file


	Return type:

	None










	
write(key_values, key_excluded, step=0)

	Write a dictionary to file


	Parameters:

	
	key_values (Dict[str, Any]) – 


	key_excluded (Dict[str, Tuple[str, ...]]) – 


	step (int) – 






	Return type:

	None














	
class stable_baselines3.common.logger.Video(frames, fps)

	Video data class storing the video frames and the frame per seconds


	Parameters:

	
	frames (Tensor) – frames to create the video from


	fps (float) – frames per second













	
stable_baselines3.common.logger.configure(folder=None, format_strings=None)

	Configure the current logger.


	Parameters:

	
	folder (Optional[str]) – the save location
(if None, $SB3_LOGDIR, if still None, tempdir/SB3-[date & time])


	format_strings (Optional[List[str]]) – the output logging format
(if None, $SB3_LOG_FORMAT, if still None, [‘stdout’, ‘log’, ‘csv’])






	Return type:

	Logger



	Returns:

	The logger object.










	
stable_baselines3.common.logger.filter_excluded_keys(key_values, key_excluded, _format)

	Filters the keys specified by key_exclude for the specified format


	Parameters:

	
	key_values (Dict[str, Any]) – log dictionary to be filtered


	key_excluded (Dict[str, Tuple[str, ...]]) – keys to be excluded per format


	_format (str) – format for which this filter is run






	Return type:

	Dict[str, Any]



	Returns:

	dict without the excluded keys










	
stable_baselines3.common.logger.make_output_format(_format, log_dir, log_suffix='')

	return a logger for the requested format


	Parameters:

	
	_format (str) – the requested format to log to (‘stdout’, ‘log’, ‘json’ or ‘csv’ or ‘tensorboard’)


	log_dir (str) – the logging directory


	log_suffix (str) – the suffix for the log file






	Return type:

	KVWriter



	Returns:

	the logger










	
stable_baselines3.common.logger.read_csv(filename)

	read a csv file using pandas


	Parameters:

	filename (str) – the file path to read



	Return type:

	DataFrame



	Returns:

	the data in the csv










	
stable_baselines3.common.logger.read_json(filename)

	read a json file using pandas


	Parameters:

	filename (str) – the file path to read



	Return type:

	DataFrame



	Returns:

	the data in the json














            

          

      

      

    

  

    
      
          
            
  
Action Noise


	
class stable_baselines3.common.noise.ActionNoise

	The action noise base class


	
reset()

	Call end of episode reset for the noise


	Return type:

	None














	
class stable_baselines3.common.noise.NormalActionNoise(mean, sigma, dtype=<class 'numpy.float32'>)

	A Gaussian action noise.


	Parameters:

	
	mean (ndarray) – Mean value of the noise


	sigma (ndarray) – Scale of the noise (std here)


	dtype (Union[dtype, None, type, _SupportsDType[dtype], str, Tuple[Any, int], Tuple[Any, Union[SupportsIndex, Sequence[SupportsIndex]]], List[Any], _DTypeDict, Tuple[Any, Any]]) – Type of the output noise













	
class stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise(mean, sigma, theta=0.15, dt=0.01, initial_noise=None, dtype=<class 'numpy.float32'>)

	An Ornstein Uhlenbeck action noise, this is designed to approximate Brownian motion with friction.

Based on http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab


	Parameters:

	
	mean (ndarray) – Mean of the noise


	sigma (ndarray) – Scale of the noise


	theta (float) – Rate of mean reversion


	dt (float) – Timestep for the noise


	initial_noise (Optional[ndarray]) – Initial value for the noise output, (if None: 0)


	dtype (Union[dtype, None, type, _SupportsDType[dtype], str, Tuple[Any, int], Tuple[Any, Union[SupportsIndex, Sequence[SupportsIndex]]], List[Any], _DTypeDict, Tuple[Any, Any]]) – Type of the output noise









	
reset()

	reset the Ornstein Uhlenbeck noise, to the initial position


	Return type:

	None














	
class stable_baselines3.common.noise.VectorizedActionNoise(base_noise, n_envs)

	A Vectorized action noise for parallel environments.


	Parameters:

	
	base_noise (ActionNoise) – Noise generator to use


	n_envs (int) – Number of parallel environments









	
reset(indices=None)

	Reset all the noise processes, or those listed in indices.


	Parameters:

	indices (Optional[Iterable[int]]) – The indices to reset. Default: None.
If the parameter is None, then all processes are reset to their initial position.



	Return type:

	None
















            

          

      

      

    

  

    
      
          
            
  
Utils


	
stable_baselines3.common.utils.check_for_correct_spaces(env, observation_space, action_space)

	Checks that the environment has same spaces as provided ones. Used by BaseAlgorithm to check if
spaces match after loading the model with given env.
Checked parameters:
- observation_space
- action_space


	Parameters:

	
	env (Union[Env, VecEnv]) – Environment to check for valid spaces


	observation_space (Space) – Observation space to check against


	action_space (Space) – Action space to check against






	Return type:

	None










	
stable_baselines3.common.utils.check_shape_equal(space1, space2)

	If the spaces are Box, check that they have the same shape.

If the spaces are Dict, it recursively checks the subspaces.


	Parameters:

	
	space1 (Space) – Space


	space2 (Space) – Other space






	Return type:

	None










	
stable_baselines3.common.utils.configure_logger(verbose=0, tensorboard_log=None, tb_log_name='', reset_num_timesteps=True)

	Configure the logger’s outputs.


	Parameters:

	
	verbose (int) – Verbosity level: 0 for no output, 1 for the standard output to be part of the logger outputs


	tensorboard_log (Optional[str]) – the log location for tensorboard (if None, no logging)


	tb_log_name (str) – tensorboard log


	reset_num_timesteps (bool) – Whether the num_timesteps attribute is reset or not.
It allows to continue a previous learning curve (reset_num_timesteps=False)
or start from t=0 (reset_num_timesteps=True, the default).






	Return type:

	Logger



	Returns:

	The logger object










	
stable_baselines3.common.utils.constant_fn(val)

	Create a function that returns a constant
It is useful for learning rate schedule (to avoid code duplication)


	Parameters:

	val (float) – constant value



	Return type:

	Callable[[float], float]



	Returns:

	Constant schedule function.










	
stable_baselines3.common.utils.explained_variance(y_pred, y_true)

	Computes fraction of variance that ypred explains about y.
Returns 1 - Var[y-ypred] / Var[y]


	interpretation:
	ev=0  =>  might as well have predicted zero
ev=1  =>  perfect prediction
ev<0  =>  worse than just predicting zero






	Parameters:

	
	y_pred (ndarray) – the prediction


	y_true (ndarray) – the expected value






	Return type:

	ndarray



	Returns:

	explained variance of ypred and y










	
stable_baselines3.common.utils.get_device(device='auto')

	Retrieve PyTorch device.
It checks that the requested device is available first.
For now, it supports only cpu and cuda.
By default, it tries to use the gpu.


	Parameters:

	device (Union[device, str]) – One for ‘auto’, ‘cuda’, ‘cpu’



	Return type:

	device



	Returns:

	Supported Pytorch device










	
stable_baselines3.common.utils.get_latest_run_id(log_path='', log_name='')

	Returns the latest run number for the given log name and log path,
by finding the greatest number in the directories.


	Parameters:

	
	log_path (str) – Path to the log folder containing several runs.


	log_name (str) – Name of the experiment. Each run is stored
in a folder named log_name_1, log_name_2, …






	Return type:

	int



	Returns:

	latest run number










	
stable_baselines3.common.utils.get_linear_fn(start, end, end_fraction)

	Create a function that interpolates linearly between start and end
between progress_remaining = 1 and progress_remaining = end_fraction.
This is used in DQN for linearly annealing the exploration fraction
(epsilon for the epsilon-greedy strategy).


	Params start:

	value to start with if progress_remaining = 1



	Params end:

	value to end with if progress_remaining = 0



	Params end_fraction:

	fraction of progress_remaining
where end is reached e.g 0.1 then end is reached after 10%
of the complete training process.



	Return type:

	Callable[[float], float]



	Returns:

	Linear schedule function.










	
stable_baselines3.common.utils.get_parameters_by_name(model, included_names)

	Extract parameters from the state dict of model
if the name contains one of the strings in included_names.


	Parameters:

	
	model (Module) – the model where the parameters come from.


	included_names (Iterable[str]) – substrings of names to include.






	Return type:

	List[Tensor]



	Returns:

	List of parameters values (Pytorch tensors)
that matches the queried names.










	
stable_baselines3.common.utils.get_schedule_fn(value_schedule)

	Transform (if needed) learning rate and clip range (for PPO)
to callable.


	Parameters:

	value_schedule (Union[Callable[[float], float], float]) – Constant value of schedule function



	Return type:

	Callable[[float], float]



	Returns:

	Schedule function (can return constant value)










	
stable_baselines3.common.utils.get_system_info(print_info=True)

	Retrieve system and python env info for the current system.


	Parameters:

	print_info (bool) – Whether to print or not those infos



	Return type:

	Tuple[Dict[str, str], str]



	Returns:

	Dictionary summing up the version for each relevant package
and a formatted string.










	
stable_baselines3.common.utils.is_vectorized_box_observation(observation, observation_space)

	For box observation type, detects and validates the shape,
then returns whether or not the observation is vectorized.


	Parameters:

	
	observation (ndarray) – the input observation to validate


	observation_space (Box) – the observation space






	Return type:

	bool



	Returns:

	whether the given observation is vectorized or not










	
stable_baselines3.common.utils.is_vectorized_dict_observation(observation, observation_space)

	For dict observation type, detects and validates the shape,
then returns whether or not the observation is vectorized.


	Parameters:

	
	observation (ndarray) – the input observation to validate


	observation_space (Dict) – the observation space






	Return type:

	bool



	Returns:

	whether the given observation is vectorized or not










	
stable_baselines3.common.utils.is_vectorized_discrete_observation(observation, observation_space)

	For discrete observation type, detects and validates the shape,
then returns whether or not the observation is vectorized.


	Parameters:

	
	observation (Union[int, ndarray]) – the input observation to validate


	observation_space (Discrete) – the observation space






	Return type:

	bool



	Returns:

	whether the given observation is vectorized or not










	
stable_baselines3.common.utils.is_vectorized_multibinary_observation(observation, observation_space)

	For multibinary observation type, detects and validates the shape,
then returns whether or not the observation is vectorized.


	Parameters:

	
	observation (ndarray) – the input observation to validate


	observation_space (MultiBinary) – the observation space






	Return type:

	bool



	Returns:

	whether the given observation is vectorized or not










	
stable_baselines3.common.utils.is_vectorized_multidiscrete_observation(observation, observation_space)

	For multidiscrete observation type, detects and validates the shape,
then returns whether or not the observation is vectorized.


	Parameters:

	
	observation (ndarray) – the input observation to validate


	observation_space (MultiDiscrete) – the observation space






	Return type:

	bool



	Returns:

	whether the given observation is vectorized or not










	
stable_baselines3.common.utils.is_vectorized_observation(observation, observation_space)

	For every observation type, detects and validates the shape,
then returns whether or not the observation is vectorized.


	Parameters:

	
	observation (Union[int, ndarray]) – the input observation to validate


	observation_space (Space) – the observation space






	Return type:

	bool



	Returns:

	whether the given observation is vectorized or not










	
stable_baselines3.common.utils.obs_as_tensor(obs, device)

	Moves the observation to the given device.


	Parameters:

	
	obs (Union[ndarray, Dict[str, ndarray]]) – 


	device (device) – PyTorch device






	Return type:

	Union[Tensor, Dict[str, Tensor]]



	Returns:

	PyTorch tensor of the observation on a desired device.










	
stable_baselines3.common.utils.polyak_update(params, target_params, tau)

	Perform a Polyak average update on target_params using params:
target parameters are slowly updated towards the main parameters.
tau, the soft update coefficient controls the interpolation:
tau=1 corresponds to copying the parameters to the target ones whereas nothing happens when tau=0.
The Polyak update is done in place, with no_grad, and therefore does not create intermediate tensors,
or a computation graph, reducing memory cost and improving performance.  We scale the target params
by 1-tau (in-place), add the new weights, scaled by tau and store the result of the sum in the target
params (in place).
See https://github.com/DLR-RM/stable-baselines3/issues/93


	Parameters:

	
	params (Iterable[Tensor]) – parameters to use to update the target params


	target_params (Iterable[Tensor]) – parameters to update


	tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1)






	Return type:

	None










	
stable_baselines3.common.utils.safe_mean(arr)

	Compute the mean of an array if there is at least one element.
For empty array, return NaN. It is used for logging only.


	Parameters:

	arr (Union[ndarray, list, deque]) – Numpy array or list of values



	Return type:

	ndarray



	Returns:

	










	
stable_baselines3.common.utils.set_random_seed(seed, using_cuda=False)

	Seed the different random generators.


	Parameters:

	
	seed (int) – 


	using_cuda (bool) – 






	Return type:

	None










	
stable_baselines3.common.utils.should_collect_more_steps(train_freq, num_collected_steps, num_collected_episodes)

	Helper used in collect_rollouts() of off-policy algorithms
to determine the termination condition.


	Parameters:

	
	train_freq (TrainFreq) – How much experience should be collected before updating the policy.


	num_collected_steps (int) – The number of already collected steps.


	num_collected_episodes (int) – The number of already collected episodes.






	Return type:

	bool



	Returns:

	Whether to continue or not collecting experience
by doing rollouts of the current policy.










	
stable_baselines3.common.utils.update_learning_rate(optimizer, learning_rate)

	Update the learning rate for a given optimizer.
Useful when doing linear schedule.


	Parameters:

	
	optimizer (Optimizer) – Pytorch optimizer


	learning_rate (float) – New learning rate value






	Return type:

	None










	
stable_baselines3.common.utils.zip_strict(*iterables)

	zip() function but enforces that iterables are of equal length.
Raises ValueError if iterables not of equal length.
Code inspired by Stackoverflow answer for question #32954486.


	Parameters:

	*iterables (Iterable) – iterables to zip()



	Return type:

	Iterable












            

          

      

      

    

  

    
      
          
            
  
Changelog


Release 2.0.0 (2023-06-22)

Gymnasium support


Warning

Stable-Baselines3 (SB3) v2.0 will be the last one supporting python 3.7 (end of life in June 2023).
We highly recommended you to upgrade to Python >= 3.8.




Breaking Changes:


	Switched to Gymnasium as primary backend, Gym 0.21 and 0.26 are still supported via the shimmy package (@carlosluis, @arjun-kg, @tlpss)


	The deprecated online_sampling argument of HerReplayBuffer was removed


	Removed deprecated stack_observation_space method of StackedObservations


	Renamed environment output observations in evaluate_policy to prevent shadowing the input observations during callbacks (@npit)


	Upgraded wrappers and custom environment to Gymnasium


	Refined the HumanOutputFormat file check: now it verifies if the object is an instance of io.TextIOBase instead of only checking for the presence of a write method.


	Because of new Gym API (0.26+), the random seed passed to vec_env.seed(seed=seed) will only be effective after then env.reset() call.






New Features:


	Added Gymnasium support (Gym 0.21 and 0.26 are supported via the shimmy package)






SB3-Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]


	Fixed QRDQN update interval for multi envs






RL Zoo [https://github.com/DLR-RM/rl-baselines3-zoo]


	Gym 0.26+ patches to continue working with pybullet and TimeLimit wrapper


	Renamed CarRacing-v1 to CarRacing-v2 in hyperparameters


	Huggingface push to hub now accepts a –n-timesteps argument to adjust the length of the video


	Fixed record_video steps (before it was stepping in a closed env)


	Dropped Gym 0.21 support






Bug Fixes:


	Fixed VecExtractDictObs does not handle terminal observation (@WeberSamuel)


	Set NumPy version to >=1.20 due to use of numpy.typing (@troiganto)


	Fixed loading DQN changes target_update_interval (@tobirohrer)


	Fixed env checker to properly reset the env before calling step() when checking
for Inf and NaN (@lutogniew)


	Fixed HER truncate_last_trajectory() (@lbergmann1)


	Fixed HER desired and achieved goal order in reward computation (@JonathanKuelz)






Deprecations:



Others:


	Fixed stable_baselines3/a2c/*.py type hints


	Fixed stable_baselines3/ppo/*.py type hints


	Fixed stable_baselines3/sac/*.py type hints


	Fixed stable_baselines3/td3/*.py type hints


	Fixed stable_baselines3/common/base_class.py type hints


	Fixed stable_baselines3/common/logger.py type hints


	Fixed stable_baselines3/common/envs/*.py type hints


	Fixed stable_baselines3/common/vec_env/vec_monitor|vec_extract_dict_obs|util.py type hints


	Fixed stable_baselines3/common/vec_env/base_vec_env.py type hints


	Fixed stable_baselines3/common/vec_env/vec_frame_stack.py type hints


	Fixed stable_baselines3/common/vec_env/dummy_vec_env.py type hints


	Fixed stable_baselines3/common/vec_env/subproc_vec_env.py type hints


	Upgraded docker images to use mamba/micromamba and CUDA 11.7


	Updated env checker to reflect what subset of Gymnasium is supported and improve GoalEnv checks


	Improve type annotation of wrappers


	Tests envs are now checked too


	Added render test for VecEnv and VecEnvWrapper


	Update issue templates and env info saved with the model


	Changed seed() method return type from List to Sequence


	Updated env checker doc and requirements for tuple spaces/goal envs






Documentation:


	Added Deep RL Course link to the Deep RL Resources page


	Added documentation about VecEnv API vs Gym API


	Upgraded tutorials to Gymnasium API


	Make it more explicit when using VecEnv vs Gym env


	Added UAV_Navigation_DRL_AirSim to the project page (@heleidsn)


	Added EvalCallback example (@sidney-tio)


	Update custom env documentation


	Added pink-noise-rl to projects page


	Fix custom policy example, ortho_init was ignored


	Added SBX page







Release 1.8.0 (2023-04-07)

Multi-env HerReplayBuffer, Open RL Benchmark, Improved env checker


Warning

Stable-Baselines3 (SB3) v1.8.0 will be the last one to use Gym as a backend.
Starting with v2.0.0, Gymnasium will be the default backend (though SB3 will have compatibility layers for Gym envs).
You can find a migration guide here: https://gymnasium.farama.org/content/migration-guide/.
If you want to try the SB3 v2.0 alpha version, you can take a look at PR #1327 [https://github.com/DLR-RM/stable-baselines3/pull/1327].




Breaking Changes:


	Removed shared layers in mlp_extractor (@AlexPasqua)


	Refactored StackedObservations (it now handles dict obs, StackedDictObservations was removed)


	You must now explicitely pass a features_extractor parameter when calling extract_features()


	Dropped offline sampling for HerReplayBuffer


	As HerReplayBuffer was refactored to support multiprocessing, previous replay buffer are incompatible with this new version


	HerReplayBuffer doesn’t require a max_episode_length anymore






New Features:


	Added repeat_action_probability argument in AtariWrapper.


	Only use NoopResetEnv and MaxAndSkipEnv when needed in AtariWrapper


	Added support for dict/tuple observations spaces for VecCheckNan, the check is now active in the env_checker() (@DavyMorgan)


	Added multiprocessing support for HerReplayBuffer


	HerReplayBuffer now supports all datatypes supported by ReplayBuffer


	Provide more helpful failure messages when validating the observation_space of custom gym environments using check_env (@FieteO)


	Added stats_window_size argument to control smoothing in rollout logging (@jonasreiher)






SB3-Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]


	Added warning about potential crashes caused by check_env in the MaskablePPO docs (@AlexPasqua)


	Fixed sb3_contrib/qrdqn/*.py type hints


	Removed shared layers in mlp_extractor (@AlexPasqua)






RL Zoo [https://github.com/DLR-RM/rl-baselines3-zoo]


	Open RL Benchmark [https://github.com/openrlbenchmark/openrlbenchmark/issues/7]


	Upgraded to new HerReplayBuffer implementation that supports multiple envs


	Removed TimeFeatureWrapper for Panda and Fetch envs, as the new replay buffer should handle timeout.


	Tuned hyperparameters for RecurrentPPO on Swimmer


	Documentation is now built using Sphinx and hosted on read the doc


	Removed use_auth_token for push to hub util


	Reverted from v3 to v2 for HumanoidStandup, Reacher, InvertedPendulum and InvertedDoublePendulum since they were not part of the mujoco refactoring (see https://github.com/openai/gym/pull/1304)


	Fixed gym-minigrid policy (from MlpPolicy to MultiInputPolicy)


	Replaced deprecated optuna.suggest_loguniform(…) by optuna.suggest_float(…, log=True)


	Switched to ruff and pyproject.toml


	Removed online_sampling and max_episode_length argument when using HerReplayBuffer






Bug Fixes:


	Fixed Atari wrapper that missed the reset condition (@luizapozzobon)


	Added the argument dtype (default to float32) to the noise for consistency with gym action (@sidney-tio)


	Fixed PPO train/n_updates metric not accounting for early stopping (@adamfrly)


	Fixed loading of normalized image-based environments


	Fixed DictRolloutBuffer.add with multidimensional action space (@younik)






Deprecations:



Others:


	Fixed tests/test_tensorboard.py type hint


	Fixed tests/test_vec_normalize.py type hint


	Fixed stable_baselines3/common/monitor.py type hint


	Added tests for StackedObservations


	Removed Gitlab CI file


	Moved from setup.cg to pyproject.toml configuration file


	Switched from flake8 to ruff


	Upgraded AutoROM to latest version


	Fixed stable_baselines3/dqn/*.py type hints


	Added extra_no_roms option for package installation without Atari Roms






Documentation:


	Renamed load_parameters to set_parameters (@DavyMorgan)


	Clarified documentation about subproc multiprocessing for A2C (@Bonifatius94)


	Fixed typo in A2C docstring (@AlexPasqua)


	Renamed timesteps to episodes for log_interval description (@theSquaredError)


	Removed note about gif creation for Atari games (@harveybellini)


	Added information about default network architecture


	Update information about Gymnasium support







Release 1.7.0 (2023-01-10)


Warning

Shared layers in MLP policy (mlp_extractor) are now deprecated for PPO, A2C and TRPO.
This feature will be removed in SB3 v1.8.0 and the behavior of net_arch=[64, 64]
will create separate networks with the same architecture, to be consistent with the off-policy algorithms.




Note

A2C and PPO saved with SB3 < 1.7.0 will show a warning about
missing keys in the state dict when loaded with SB3 >= 1.7.0.
To suppress the warning, simply save the model again.
You can find more info in issue #1233 [https://github.com/DLR-RM/stable-baselines3/issues/1233]




Breaking Changes:


	Removed deprecated create_eval_env, eval_env, eval_log_path, n_eval_episodes and eval_freq parameters,
please use an EvalCallback instead


	Removed deprecated sde_net_arch parameter


	Removed ret attributes in VecNormalize, please use returns instead


	VecNormalize now updates the observation space when normalizing images






New Features:


	Introduced mypy type checking


	Added option to have non-shared features extractor between actor and critic in on-policy algorithms (@AlexPasqua)


	Added with_bias argument to create_mlp


	Added support for multidimensional spaces.MultiBinary observations


	Features extractors now properly support unnormalized image-like observations (3D tensor)
when passing normalize_images=False


	Added normalized_image parameter to NatureCNN and CombinedExtractor


	Added support for Python 3.10






SB3-Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]


	Fixed a bug in RecurrentPPO where the lstm states where incorrectly reshaped for n_lstm_layers > 1 (thanks @kolbytn)


	Fixed RuntimeError: rnn: hx is not contiguous while predicting terminal values for RecurrentPPO when n_lstm_layers > 1






RL Zoo [https://github.com/DLR-RM/rl-baselines3-zoo]


	Added support for python file for configuration


	Added monitor_kwargs parameter






Bug Fixes:


	Fixed ProgressBarCallback under-reporting (@dominicgkerr)


	Fixed return type of evaluate_actions in ActorCritcPolicy to reflect that entropy is an optional tensor (@Rocamonde)


	Fixed type annotation of policy in BaseAlgorithm and OffPolicyAlgorithm


	Allowed model trained with Python 3.7 to be loaded with Python 3.8+ without the custom_objects workaround


	Raise an error when the same gym environment instance is passed as separate environments when creating a vectorized environment with more than one environment. (@Rocamonde)


	Fix type annotation of model in evaluate_policy


	Fixed Self return type using TypeVar


	Fixed the env checker, the key was not passed when checking images from Dict observation space


	Fixed normalize_images which was not passed to parent class in some cases


	Fixed load_from_vector that was broken with newer PyTorch version when passing PyTorch tensor






Deprecations:


	You should now explicitely pass a features_extractor parameter when calling extract_features()


	Deprecated shared layers in MlpExtractor (@AlexPasqua)






Others:


	Used issue forms instead of issue templates


	Updated the PR template to associate each PR with its peer in RL-Zoo3 and SB3-Contrib


	Fixed flake8 config to be compatible with flake8 6+


	Goal-conditioned environments are now characterized by the availability of the compute_reward method, rather than by their inheritance to gym.GoalEnv


	Replaced CartPole-v0 by CartPole-v1 is tests


	Fixed tests/test_distributions.py type hints


	Fixed stable_baselines3/common/type_aliases.py type hints


	Fixed stable_baselines3/common/torch_layers.py type hints


	Fixed stable_baselines3/common/env_util.py type hints


	Fixed stable_baselines3/common/preprocessing.py type hints


	Fixed stable_baselines3/common/atari_wrappers.py type hints


	Fixed stable_baselines3/common/vec_env/vec_check_nan.py type hints


	Exposed modules in __init__.py with the __all__ attribute (@ZikangXiong)


	Upgraded GitHub CI/setup-python to v4 and checkout to v3


	Set tensors construction directly on the device (~8% speed boost on GPU)


	Monkey-patched np.bool = bool so gym 0.21 is compatible with NumPy 1.24+


	Standardized the use of from gym import spaces


	Modified get_system_info to avoid issue linked to copy-pasting on GitHub issue






Documentation:


	Updated Hugging Face Integration page (@simoninithomas)


	Changed env to vec_env when environment is vectorized


	Updated custom policy docs to better explain the mlp_extractor’s dimensions (@AlexPasqua)


	Updated custom policy documentation (@athatheo)


	Improved tensorboard callback doc


	Clarify doc when using image-like input


	Added RLeXplore to the project page (@yuanmingqi)







Release 1.6.2 (2022-10-10)

Progress bar in the learn() method, RL Zoo3 is now a package


Breaking Changes:



New Features:


	Added progress_bar argument in the learn() method, displayed using TQDM and rich packages


	Added progress bar callback


	The RL Zoo [https://github.com/DLR-RM/rl-baselines3-zoo] can now be installed as a package (pip install rl_zoo3)






SB3-Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]



RL Zoo [https://github.com/DLR-RM/rl-baselines3-zoo]


	RL Zoo is now a python package and can be installed using pip install rl_zoo3






Bug Fixes:


	self.num_timesteps was initialized properly only after the first call to on_step() for callbacks


	Set importlib-metadata version to ~=4.13 to be compatible with gym=0.21






Deprecations:


	Added deprecation warning if parameters eval_env, eval_freq or create_eval_env are used (see #925) (@tobirohrer)






Others:


	Fixed type hint of the env_id parameter in make_vec_env and make_atari_env (@AlexPasqua)






Documentation:


	Extended docstring of the wrapper_class parameter in make_vec_env (@AlexPasqua)







Release 1.6.1 (2022-09-29)

Bug fix release


Breaking Changes:


	Switched minimum tensorboard version to 2.9.1






New Features:


	Support logging hyperparameters to tensorboard (@timothe-chaumont)


	Added checkpoints for replay buffer and VecNormalize statistics (@anand-bala)


	Added option for Monitor to append to existing file instead of overriding (@sidney-tio)


	The env checker now raises an error when using dict observation spaces and observation keys don’t match observation space keys






SB3-Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]


	Fixed the issue of wrongly passing policy arguments when using CnnLstmPolicy or MultiInputLstmPolicy with RecurrentPPO (@mlodel)






Bug Fixes:


	Fixed issue where PPO gives NaN if rollout buffer provides a batch of size 1 (@hughperkins)


	Fixed the issue that predict does not always return action as np.ndarray (@qgallouedec)


	Fixed division by zero error when computing FPS when a small number of time has elapsed in operating systems with low-precision timers.


	Added multidimensional action space support (@qgallouedec)


	Fixed missing verbose parameter passing in the EvalCallback constructor (@burakdmb)


	Fixed the issue that when updating the target network in DQN, SAC, TD3, the running_mean and running_var properties of batch norm layers are not updated (@honglu2875)


	Fixed incorrect type annotation of the replay_buffer_class argument in common.OffPolicyAlgorithm initializer, where an instance instead of a class was required (@Rocamonde)


	Fixed loading saved model with different number of environments


	Removed forward() abstract method declaration from common.policies.BaseModel (already defined in torch.nn.Module) to fix type errors in subclasses (@Rocamonde)


	Fixed the return type of .load() and .learn() methods in BaseAlgorithm so that they now use TypeVar (@Rocamonde)


	Fixed an issue where keys with different tags but the same key raised an error in common.logger.HumanOutputFormat (@Rocamonde and @AdamGleave)


	Set importlib-metadata version to ~=4.13






Deprecations:



Others:


	Fixed DictReplayBuffer.next_observations typing (@qgallouedec)


	Added support for device="auto" in buffers and made it default (@qgallouedec)


	Updated ResultsWriter (used internally by Monitor wrapper) to automatically create missing directories when filename is a path (@dominicgkerr)






Documentation:


	Added an example of callback that logs hyperparameters to tensorboard. (@timothe-chaumont)


	Fixed typo in docstring “nature” -> “Nature” (@Melanol)


	Added info on split tensorboard logs into (@Melanol)


	Fixed typo in ppo doc (@francescoluciano)


	Fixed typo in install doc(@jlp-ue)


	Clarified and standardized verbosity documentation


	Added link to a GitHub issue in the custom policy documentation (@AlexPasqua)


	Update doc on exporting models (fixes and added torch jit)


	Fixed typos (@Akhilez)


	Standardized the use of " for string representation in documentation







Release 1.6.0 (2022-07-11)

Recurrent PPO (PPO LSTM), better defaults for learning from pixels with SAC/TD3


Breaking Changes:


	Changed the way policy “aliases” are handled (“MlpPolicy”, “CnnPolicy”, …), removing the former
register_policy helper, policy_base parameter and using policy_aliases static attributes instead (@Gregwar)


	SB3 now requires PyTorch >= 1.11


	Changed the default network architecture when using CnnPolicy or MultiInputPolicy with SAC or DDPG/TD3,
share_features_extractor is now set to False by default and the net_arch=[256, 256] (instead of net_arch=[] that was before)






New Features:



SB3-Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]


	Added Recurrent PPO (PPO LSTM). See https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/pull/53






Bug Fixes:


	Fixed saving and loading large policies greater than 2GB (@jkterry1, @ycheng517)


	Fixed final goal selection strategy that did not sample the final achieved goal (@qgallouedec)


	Fixed a bug with special characters in the tensorboard log name (@quantitative-technologies)


	Fixed a bug in DummyVecEnv’s and SubprocVecEnv’s seeding function. None value was unchecked (@ScheiklP)


	Fixed a bug where EvalCallback would crash when trying to synchronize VecNormalize stats when observation normalization was disabled


	Added a check for unbounded actions


	Fixed issues due to newer version of protobuf (tensorboard) and sphinx


	Fix exception causes all over the codebase (@cool-RR)


	Prohibit simultaneous use of optimize_memory_usage and handle_timeout_termination due to a bug (@MWeltevrede)


	Fixed a bug in kl_divergence check that would fail when using numpy arrays with MultiCategorical distribution






Deprecations:



Others:


	Upgraded to Python 3.7+ syntax using pyupgrade


	Removed redundant double-check for nested observations from BaseAlgorithm._wrap_env (@TibiGG)






Documentation:


	Added link to gym doc and gym env checker


	Fix typo in PPO doc (@bcollazo)


	Added link to PPO ICLR blog post


	Added remark about breaking Markov assumption and timeout handling


	Added doc about MLFlow integration via custom logger (@git-thor)


	Updated Huggingface integration doc


	Added copy button for code snippets


	Added doc about EnvPool and Isaac Gym support







Release 1.5.0 (2022-03-25)

Bug fixes, early stopping callback


Breaking Changes:


	Switched minimum Gym version to 0.21.0






New Features:


	Added StopTrainingOnNoModelImprovement to callback collection (@caburu)


	Makes the length of keys and values in HumanOutputFormat configurable,
depending on desired maximum width of output.


	Allow PPO to turn of advantage normalization (see PR #763 [https://github.com/DLR-RM/stable-baselines3/pull/763]) @vwxyzjn






SB3-Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]


	coming soon: Cross Entropy Method, see https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/pull/62






Bug Fixes:


	Fixed a bug in VecMonitor. The monitor did not consider the info_keywords during stepping (@ScheiklP)


	Fixed a bug in HumanOutputFormat. Distinct keys truncated to the same prefix would overwrite each others value,
resulting in only one being output. This now raises an error (this should only affect a small fraction of use cases
with very long keys.)


	Routing all the nn.Module calls through implicit rather than explict forward as per pytorch guidelines (@manuel-delverme)


	Fixed a bug in VecNormalize where error occurs when norm_obs is set to False for environment with dictionary observation  (@buoyancy99)


	Set default env argument to None in HerReplayBuffer.sample (@qgallouedec)


	Fix batch_size typing in DQN (@qgallouedec)


	Fixed sample normalization in DictReplayBuffer (@qgallouedec)






Deprecations:



Others:


	Fixed pytest warnings


	Removed parameter remove_time_limit_termination in off policy algorithms since it was dead code (@Gregwar)






Documentation:


	Added doc on Hugging Face integration (@simoninithomas)


	Added furuta pendulum project to project list (@armandpl)


	Fix indentation 2 spaces to 4 spaces in custom env documentation example (@Gautam-J)


	Update MlpExtractor docstring (@gianlucadecola)


	Added explanation of the logger output


	Update Directly Accessing The Summary Writer in tensorboard integration (@xy9485)







Release 1.4.0 (2022-01-18)

TRPO, ARS and multi env training for off-policy algorithms


Breaking Changes:


	Dropped python 3.6 support (as announced in previous release)


	Renamed mask argument of the predict() method to episode_start (used with RNN policies only)


	local variables action, done and reward were renamed to their plural form for offpolicy algorithms (actions, dones, rewards),
this may affect custom callbacks.


	Removed episode_reward field from RolloutReturn() type





Warning

An update to the HER algorithm is planned to support multi-env training and remove the max episode length constrain.
(see PR #704 [https://github.com/DLR-RM/stable-baselines3/pull/704])
This will be a backward incompatible change (model trained with previous version of HER won’t work with the new version).





New Features:


	Added norm_obs_keys param for VecNormalize wrapper to configure which observation keys to normalize (@kachayev)


	Added experimental support to train off-policy algorithms with multiple envs (note: HerReplayBuffer currently not supported)


	Handle timeout termination properly for on-policy algorithms (when using TimeLimit)


	Added skip option to VecTransposeImage to skip transforming the channel order when the heuristic is wrong


	Added copy() and combine() methods to RunningMeanStd






SB3-Contrib [https://github.com/Stable-Baselines-Team/stable-baselines3-contrib]


	Added Trust Region Policy Optimization (TRPO) (@cyprienc)


	Added Augmented Random Search (ARS) (@sgillen)


	Coming soon: PPO LSTM, see https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/pull/53






Bug Fixes:


	Fixed a bug where set_env() with VecNormalize would result in an error with off-policy algorithms (thanks @cleversonahum)


	FPS calculation is now performed based on number of steps performed during last learn call, even when reset_num_timesteps is set to False (@kachayev)


	Fixed evaluation script for recurrent policies (experimental feature in SB3 contrib)


	Fixed a bug where the observation would be incorrectly detected as non-vectorized instead of throwing an error


	The env checker now properly checks and warns about potential issues for continuous action spaces when the boundaries are too small or when the dtype is not float32


	Fixed a bug in VecFrameStack with channel first image envs, where the terminal observation would be wrongly created.






Deprecations:



Others:


	Added a warning in the env checker when not using np.float32 for continuous actions


	Improved test coverage and error message when checking shape of observation


	Added newline="\n" when opening CSV monitor files so that each line ends with \r\n instead of \r\r\n on Windows while Linux environments are not affected (@hsuehch)


	Fixed device argument inconsistency (@qgallouedec)






Documentation:


	Add drivergym to projects page (@theDebugger811)


	Add highway-env to projects page (@eleurent)


	Add tactile-gym to projects page (@ac-93)


	Fix indentation in the RL tips page (@cove9988)


	Update GAE computation docstring


	Add documentation on exporting to TFLite/Coral


	Added JMLR paper and updated citation


	Added link to RL Tips and Tricks video


	Updated BaseAlgorithm.load docstring (@Demetrio92)


	Added a note on load behavior in the examples (@Demetrio92)


	Updated SB3 Contrib doc


	Fixed A2C and migration guide guidance on how to set epsilon with RMSpropTFLike (@thomasgubler)


	Fixed custom policy documentation (@IperGiove)


	Added doc on Weights & Biases integration







Release 1.3.0 (2021-10-23)

Bug fixes and improvements for the user


Warning

This version will be the last one supporting Python 3.6 (end of life in Dec 2021).
We highly recommended you to upgrade to Python >= 3.7.




Breaking Changes:


	sde_net_arch argument in policies is deprecated and will be removed in a future version.


	_get_latent (ActorCriticPolicy) was removed


	All logging keys now use underscores instead of spaces (@timokau). Concretely this changes:



	time/total timesteps to time/total_timesteps for off-policy algorithms (PPO and A2C) and the eval callback (on-policy algorithms already used the underscored version),


	rollout/exploration rate to rollout/exploration_rate and


	rollout/success rate to rollout/success_rate.













New Features:


	Added methods get_distribution and predict_values for ActorCriticPolicy for A2C/PPO/TRPO (@cyprienc)


	Added methods forward_actor and forward_critic for MlpExtractor


	Added sb3.get_system_info() helper function to gather version information relevant to SB3 (e.g., Python and PyTorch version)


	Saved models now store system information where agent was trained, and load functions have print_system_info parameter to help debugging load issues






Bug Fixes:


	Fixed dtype of observations for SimpleMultiObsEnv


	Allow VecNormalize to wrap discrete-observation environments to normalize reward
when observation normalization is disabled


	Fixed a bug where DQN would throw an error when using Discrete observation and stochastic actions


	Fixed a bug where sub-classed observation spaces could not be used


	Added force_reset argument to load() and set_env() in order to be able to call learn(reset_num_timesteps=False) with a new environment






Deprecations:



Others:


	Cap gym max version to 0.19 to avoid issues with atari-py and other breaking changes


	Improved error message when using dict observation with the wrong policy


	Improved error message when using EvalCallback with two envs not wrapped the same way.


	Added additional infos about supported python version for PyPi in setup.py






Documentation:


	Add Rocket League Gym to list of supported projects (@AechPro)


	Added gym-electric-motor to project page (@wkirgsn)


	Added policy-distillation-baselines to project page (@CUN-bjy)


	Added ONNX export instructions (@batu)


	Update read the doc env (fixed docutils issue)


	Fix PPO environment name (@IljaAvadiev)


	Fix custom env doc and add env registration example


	Update algorithms from SB3 Contrib


	Use underscores for numeric literals in examples to improve clarity







Release 1.2.0 (2021-09-03)

Hotfix for VecNormalize, training/eval mode support


Breaking Changes:


	SB3 now requires PyTorch >= 1.8.1


	VecNormalize ret attribute was renamed to returns






New Features:



Bug Fixes:


	Hotfix for VecNormalize where the observation filter was not updated at reset (thanks @vwxyzjn)


	Fixed model predictions when using batch normalization and dropout layers by calling train() and eval() (@davidblom603)


	Fixed model training for DQN, TD3 and SAC so that their target nets always remain in evaluation mode (@ayeright)


	Passing gradient_steps=0 to an off-policy algorithm will result in no gradient steps being taken (vs as many gradient steps as steps done in the environment
during the rollout in previous versions)






Deprecations:



Others:


	Enabled Python 3.9 in GitHub CI


	Fixed type annotations


	Refactored predict() by moving the preprocessing to obs_to_tensor() method






Documentation:


	Updated multiprocessing example


	Added example of VecEnvWrapper


	Added a note about logging to tensorboard more often


	Added warning about simplicity of examples and link to RL zoo (@MihaiAnca13)







Release 1.1.0 (2021-07-01)

Dict observation support, timeout handling and refactored HER buffer


Breaking Changes:


	All customs environments (e.g. the BitFlippingEnv or IdentityEnv) were moved to stable_baselines3.common.envs folder


	Refactored HER which is now the HerReplayBuffer class that can be passed to any off-policy algorithm


	Handle timeout termination properly for off-policy algorithms (when using TimeLimit)


	Renamed _last_dones and dones to _last_episode_starts and episode_starts in RolloutBuffer.


	Removed ObsDictWrapper as Dict observation spaces are now supported




her_kwargs = dict(n_sampled_goal=2, goal_selection_strategy="future", online_sampling=True)
# SB3 < 1.1.0
# model = HER("MlpPolicy", env, model_class=SAC, **her_kwargs)
# SB3 >= 1.1.0:
model = SAC("MultiInputPolicy", env, replay_buffer_class=HerReplayBuffer, replay_buffer_kwargs=her_kwargs)






	Updated the KL Divergence estimator in the PPO algorithm to be positive definite and have lower variance (@09tangriro)


	Updated the KL Divergence check in the PPO algorithm to be before the gradient update step rather than after end of epoch (@09tangriro)


	Removed parameter channels_last from is_image_space as it can be inferred.


	The logger object is now an attribute model.logger that be set by the user using model.set_logger()


	Changed the signature of logger.configure and utils.configure_logger, they now return a Logger object


	Removed Logger.CURRENT and Logger.DEFAULT


	Moved warn(), debug(), log(), info(), dump() methods to the Logger class


	.learn() now throws an import error when the user tries to log to tensorboard but the package is not installed






New Features:


	Added support for single-level Dict observation space (@JadenTravnik)


	Added DictRolloutBuffer DictReplayBuffer to support dictionary observations (@JadenTravnik)


	Added StackedObservations and StackedDictObservations that are used within VecFrameStack


	Added simple 4x4 room Dict test environments


	HerReplayBuffer now supports VecNormalize when online_sampling=False


	Added VecMonitor [https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/vec_env/vec_monitor.py] and
VecExtractDictObs [https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/vec_env/vec_extract_dict_obs.py] wrappers
to handle gym3-style vectorized environments (@vwxyzjn)


	Ignored the terminal observation if the it is not provided by the environment
such as the gym3-style vectorized environments. (@vwxyzjn)


	Added policy_base as input to the OnPolicyAlgorithm for more flexibility (@09tangriro)


	Added support for image observation when using HER


	Added replay_buffer_class and replay_buffer_kwargs arguments to off-policy algorithms


	Added kl_divergence helper for Distribution classes (@09tangriro)


	Added support for vector environments with num_envs > 1 (@benblack769)


	Added wrapper_kwargs argument to make_vec_env (@amy12xx)






Bug Fixes:


	Fixed potential issue when calling off-policy algorithms with default arguments multiple times (the size of the replay buffer would be the same)


	Fixed loading of ent_coef for SAC and TQC, it was not optimized anymore (thanks @Atlis)


	Fixed saving of A2C and PPO policy when using gSDE (thanks @liusida)


	Fixed a bug where no output would be shown even if verbose>=1 after passing verbose=0 once


	Fixed observation buffers dtype in DictReplayBuffer (@c-rizz)


	Fixed EvalCallback tensorboard logs being logged with the incorrect timestep. They are now written with the timestep at which they were recorded. (@skandermoalla)






Deprecations:



Others:


	Added flake8-bugbear to tests dependencies to find likely bugs


	Updated env_checker to reflect support of dict observation spaces


	Added Code of Conduct


	Added tests for GAE and lambda return computation


	Updated distribution entropy test (thanks @09tangriro)


	Added sanity check batch_size > 1 in PPO to avoid NaN in advantage normalization






Documentation:


	Added gym pybullet drones project (@JacopoPan)


	Added link to SuperSuit in projects (@justinkterry)


	Fixed DQN example (thanks @ltbd78)


	Clarified channel-first/channel-last recommendation


	Update sphinx environment installation instructions (@tom-doerr)


	Clarified pip installation in Zsh (@tom-doerr)


	Clarified return computation for on-policy algorithms (TD(lambda) estimate was used)


	Added example for using ProcgenEnv


	Added note about advanced custom policy example for off-policy algorithms


	Fixed DQN unicode checkmarks


	Updated migration guide (@juancroldan)


	Pinned docutils==0.16 to avoid issue with rtd theme


	Clarified callback save_freq definition


	Added doc on how to pass a custom logger


	Remove recurrent policies from A2C docs (@bstee615)







Release 1.0 (2021-03-15)

First Major Version


Breaking Changes:


	Removed stable_baselines3.common.cmd_util (already deprecated), please use env_util instead





Warning

A refactoring of the HER algorithm is planned together with support for dictionary observations
(see PR #243 [https://github.com/DLR-RM/stable-baselines3/pull/243] and #351 [https://github.com/DLR-RM/stable-baselines3/pull/351])
This will be a backward incompatible change (model trained with previous version of HER won’t work with the new version).





New Features:


	Added support for custom_objects when loading models






Bug Fixes:


	Fixed a bug with DQN predict method when using deterministic=False with image space






Documentation:


	Fixed examples


	Added new project using SB3: rl_reach (@PierreExeter)


	Added note about slow-down when switching to PyTorch


	Add a note on continual learning and resetting environment






Others:


	Updated RL-Zoo to reflect the fact that is it more than a collection of trained agents


	Added images to illustrate the training loop and custom policies (created with https://excalidraw.com/)


	Updated the custom policy section







Pre-Release 0.11.1 (2021-02-27)


Bug Fixes:


	Fixed a bug where train_freq was not properly converted when loading a saved model







Pre-Release 0.11.0 (2021-02-27)


Breaking Changes:


	evaluate_policy now returns rewards/episode lengths from a Monitor wrapper if one is present,
this allows to return the unnormalized reward in the case of Atari games for instance.


	Renamed common.vec_env.is_wrapped to common.vec_env.is_vecenv_wrapped to avoid confusion
with the new is_wrapped() helper


	Renamed _get_data() to _get_constructor_parameters() for policies (this affects independent saving/loading of policies)


	Removed n_episodes_rollout and merged it with train_freq, which now accepts a tuple (frequency, unit):


	replay_buffer in collect_rollout is no more optional




# SB3 < 0.11.0
# model = SAC("MlpPolicy", env, n_episodes_rollout=1, train_freq=-1)
# SB3 >= 0.11.0:
model = SAC("MlpPolicy", env, train_freq=(1, "episode"))







New Features:


	Add support for VecFrameStack to stack on first or last observation dimension, along with
automatic check for image spaces.


	VecFrameStack now has a channels_order argument to tell if observations should be stacked
on the first or last observation dimension (originally always stacked on last).


	Added common.env_util.is_wrapped and common.env_util.unwrap_wrapper functions for checking/unwrapping
an environment for specific wrapper.


	Added env_is_wrapped() method for VecEnv to check if its environments are wrapped
with given Gym wrappers.


	Added monitor_kwargs parameter to make_vec_env and make_atari_env


	Wrap the environments automatically with a Monitor wrapper when possible.


	EvalCallback now logs the success rate when available (is_success must be present in the info dict)


	Added new wrappers to log images and matplotlib figures to tensorboard. (@zampanteymedio)


	Add support for text records to Logger. (@lorenz-h)






Bug Fixes:


	Fixed bug where code added VecTranspose on channel-first image environments (thanks @qxcv)


	Fixed DQN predict method when using single gym.Env with deterministic=False


	Fixed bug that the arguments order of explained_variance() in ppo.py and a2c.py is not correct (@thisray)


	Fixed bug where full HerReplayBuffer leads to an index error. (@megan-klaiber)


	Fixed bug where replay buffer could not be saved if it was too big (> 4 Gb) for python<3.8 (thanks @hn2)


	Added informative PPO construction error in edge-case scenario where n_steps * n_envs = 1 (size of rollout buffer),
which otherwise causes downstream breaking errors in training (@decodyng)


	Fixed discrete observation space support when using multiple envs with A2C/PPO (thanks @ardabbour)


	Fixed a bug for TD3 delayed update (the update was off-by-one and not delayed when train_freq=1)


	Fixed numpy warning (replaced np.bool with bool)


	Fixed a bug where VecNormalize was not normalizing the terminal observation


	Fixed a bug where VecTranspose was not transposing the terminal observation


	Fixed a bug where the terminal observation stored in the replay buffer was not the right one for off-policy algorithms


	Fixed a bug where action_noise was not used when using HER (thanks @ShangqunYu)






Deprecations:



Others:


	Add more issue templates


	Add signatures to callable type annotations (@ernestum)


	Improve error message in NatureCNN


	Added checks for supported action spaces to improve clarity of error messages for the user


	Renamed variables in the train() method of SAC, TD3 and DQN to match SB3-Contrib.


	Updated docker base image to Ubuntu 18.04


	Set tensorboard min version to 2.2.0 (earlier version are apparently not working with PyTorch)


	Added warning for PPO when n_steps * n_envs is not a multiple of batch_size (last mini-batch truncated) (@decodyng)


	Removed some warnings in the tests






Documentation:


	Updated algorithm table


	Minor docstring improvements regarding rollout (@stheid)


	Fix migration doc for A2C (epsilon parameter)


	Fix clip_range docstring


	Fix duplicated parameter in EvalCallback docstring (thanks @tfederico)


	Added example of learning rate schedule


	Added SUMO-RL as example project (@LucasAlegre)


	Fix docstring of classes in atari_wrappers.py which were inside the constructor (@LucasAlegre)


	Added SB3-Contrib page


	Fix bug in the example code of DQN (@AptX395)


	Add example on how to access the tensorboard summary writer directly. (@lorenz-h)


	Updated migration guide


	Updated custom policy doc (separate policy architecture recommended)


	Added a note about OpenCV headless version


	Corrected typo on documentation (@mschweizer)


	Provide the environment when loading the model in the examples (@lorepieri8)







Pre-Release 0.10.0 (2020-10-28)

HER with online and offline sampling, bug fixes for features extraction


Breaking Changes:


	Warning: Renamed common.cmd_util to common.env_util for clarity (affects make_vec_env and make_atari_env functions)






New Features:


	Allow custom actor/critic network architectures using net_arch=dict(qf=[400, 300], pi=[64, 64]) for off-policy algorithms (SAC, TD3, DDPG)


	Added Hindsight Experience Replay HER. (@megan-klaiber)


	VecNormalize now supports gym.spaces.Dict observation spaces


	Support logging videos to Tensorboard (@SwamyDev)


	Added share_features_extractor argument to SAC and TD3 policies






Bug Fixes:


	Fix GAE computation for on-policy algorithms (off-by one for the last value) (thanks @Wovchena)


	Fixed potential issue when loading a different environment


	Fix ignoring the exclude parameter when recording logs using json, csv or log as logging format (@SwamyDev)


	Make make_vec_env support the env_kwargs argument when using an env ID str (@ManifoldFR)


	Fix model creation initializing CUDA even when device=”cpu” is provided


	Fix check_env not checking if the env has a Dict actionspace before calling _check_nan (@wmmc88)


	Update the check for spaces unsupported by Stable Baselines 3 to include checks on the action space (@wmmc88)


	Fixed features extractor bug for target network where the same net was shared instead
of being separate. This bug affects SAC, DDPG and TD3 when using CnnPolicy (or custom features extractor)


	Fixed a bug when passing an environment when loading a saved model with a CnnPolicy, the passed env was not wrapped properly
(the bug was introduced when implementing HER so it should not be present in previous versions)






Deprecations:



Others:


	Improved typing coverage


	Improved error messages for unsupported spaces


	Added .vscode to the gitignore






Documentation:


	Added first draft of migration guide


	Added intro to imitation [https://github.com/HumanCompatibleAI/imitation] library (@shwang)


	Enabled doc for CnnPolicies


	Added advanced saving and loading example


	Added base doc for exporting models


	Added example for getting and setting model parameters







Pre-Release 0.9.0 (2020-10-03)

Bug fixes, get/set parameters  and improved docs


Breaking Changes:


	Removed device keyword argument of policies; use policy.to(device) instead. (@qxcv)


	Rename BaseClass.get_torch_variables -> BaseClass._get_torch_save_params and BaseClass.excluded_save_params -> BaseClass._excluded_save_params


	Renamed saved items tensors to pytorch_variables for clarity


	make_atari_env, make_vec_env and set_random_seed must be imported with (and not directly from stable_baselines3.common):




from stable_baselines3.common.cmd_util import make_atari_env, make_vec_env
from stable_baselines3.common.utils import set_random_seed







New Features:


	Added unwrap_vec_wrapper() to common.vec_env to extract VecEnvWrapper if needed


	Added StopTrainingOnMaxEpisodes to callback collection (@xicocaio)


	Added device keyword argument to BaseAlgorithm.load() (@liorcohen5)


	Callbacks have access to rollout collection locals as in SB2. (@PartiallyTyped)


	Added get_parameters and set_parameters for accessing/setting parameters of the agent


	Added actor/critic loss logging for TD3. (@mloo3)






Bug Fixes:


	Added unwrap_vec_wrapper() to common.vec_env to extract VecEnvWrapper if needed


	Fixed a bug where the environment was reset twice when using evaluate_policy


	Fix logging of clip_fraction in PPO (@diditforlulz273)


	Fixed a bug where cuda support was wrongly checked when passing the GPU index, e.g., device="cuda:0" (@liorcohen5)


	Fixed a bug when the random seed was not properly set on cuda when passing the GPU index






Deprecations:



Others:


	Improve typing coverage of the VecEnv


	Fix type annotation of make_vec_env (@ManifoldFR)


	Removed AlreadySteppingError and NotSteppingError that were not used


	Fixed typos in SAC and TD3


	Reorganized functions for clarity in BaseClass (save/load functions close to each other, private
functions at top)


	Clarified docstrings on what is saved and loaded to/from files


	Simplified save_to_zip_file function by removing duplicate code


	Store library version along with the saved models


	DQN loss is now logged






Documentation:


	Added StopTrainingOnMaxEpisodes details and example (@xicocaio)


	Updated custom policy section (added custom features extractor example)


	Re-enable sphinx_autodoc_typehints


	Updated doc style for type hints and remove duplicated type hints







Pre-Release 0.8.0 (2020-08-03)

DQN, DDPG, bug fixes and performance matching for Atari games


Breaking Changes:


	AtariWrapper and other Atari wrappers were updated to match SB2 ones


	save_replay_buffer now receives as argument the file path instead of the folder path (@tirafesi)


	Refactored Critic class for TD3 and SAC, it is now called ContinuousCritic
and has an additional parameter n_critics


	SAC and TD3 now accept an arbitrary number of critics (e.g. policy_kwargs=dict(n_critics=3))
instead of only 2 previously






New Features:


	Added DQN Algorithm (@Artemis-Skade)


	Buffer dtype is now set according to action and observation spaces for ReplayBuffer


	Added warning when allocation of a buffer may exceed the available memory of the system
when psutil is available


	Saving models now automatically creates the necessary folders and raises appropriate warnings (@PartiallyTyped)


	Refactored opening paths for saving and loading to use strings, pathlib or io.BufferedIOBase (@PartiallyTyped)


	Added DDPG algorithm as a special case of TD3.


	Introduced BaseModel abstract parent for BasePolicy, which critics inherit from.






Bug Fixes:


	Fixed a bug in the close() method of SubprocVecEnv, causing wrappers further down in the wrapper stack to not be closed. (@NeoExtended)


	Fix target for updating q values in SAC: the entropy term was not conditioned by terminals states


	Use cloudpickle.load instead of pickle.load in CloudpickleWrapper. (@shwang)


	Fixed a bug with orthogonal initialization when bias=False in custom policy (@rk37)


	Fixed approximate entropy calculation in PPO and A2C. (@andyshih12)


	Fixed DQN target network sharing features extractor with the main network.


	Fixed storing correct dones in on-policy algorithm rollout collection. (@andyshih12)


	Fixed number of filters in final convolutional layer in NatureCNN to match original implementation.






Deprecations:



Others:


	Refactored off-policy algorithm to share the same .learn() method


	Split the collect_rollout() method for off-policy algorithms


	Added _on_step() for off-policy base class


	Optimized replay buffer size by removing the need of next_observations numpy array


	Optimized polyak updates (1.5-1.95 speedup) through inplace operations (@PartiallyTyped)


	Switch to black codestyle and added make format, make check-codestyle and commit-checks


	Ignored errors from newer pytype version


	Added a check when using gSDE


	Removed codacy dependency from Dockerfile


	Added common.sb2_compat.RMSpropTFLike optimizer, which corresponds closer to the implementation of RMSprop from Tensorflow.






Documentation:


	Updated notebook links


	Fixed a typo in the section of Enjoy a Trained Agent, in RL Baselines3 Zoo README. (@blurLake)


	Added Unity reacher to the projects page (@koulakis)


	Added PyBullet colab notebook


	Fixed typo in PPO example code (@joeljosephjin)


	Fixed typo in custom policy doc (@RaphaelWag)







Pre-Release 0.7.0 (2020-06-10)

Hotfix for PPO/A2C + gSDE, internal refactoring and bug fixes


Breaking Changes:


	render() method of VecEnvs now only accept one argument: mode


	Created new file common/torch_layers.py, similar to SB refactoring


	Contains all PyTorch network layer definitions and features extractors: MlpExtractor, create_mlp, NatureCNN






	Renamed BaseRLModel to BaseAlgorithm (along with offpolicy and onpolicy variants)


	Moved on-policy and off-policy base algorithms to common/on_policy_algorithm.py and common/off_policy_algorithm.py, respectively.


	Moved PPOPolicy to ActorCriticPolicy in common/policies.py


	Moved PPO (algorithm class) into OnPolicyAlgorithm (common/on_policy_algorithm.py), to be shared with A2C


	Moved following functions from BaseAlgorithm:


	_load_from_file to load_from_zip_file (save_util.py)


	_save_to_file_zip to save_to_zip_file (save_util.py)


	safe_mean to safe_mean (utils.py)


	check_env to check_for_correct_spaces (utils.py. Renamed to avoid confusion with environment checker tools)






	Moved static function _is_vectorized_observation from common/policies.py to common/utils.py under name is_vectorized_observation.


	Removed {save,load}_running_average functions of VecNormalize in favor of load/save.


	Removed use_gae parameter from RolloutBuffer.compute_returns_and_advantage.






New Features:



Bug Fixes:


	Fixed render() method for VecEnvs


	Fixed seed() method for SubprocVecEnv


	Fixed loading on GPU for testing when using gSDE and deterministic=False


	Fixed register_policy to allow re-registering same policy for same sub-class (i.e. assign same value to same key).


	Fixed a bug where the gradient was passed when using gSDE with PPO/A2C, this does not affect SAC






Deprecations:



Others:


	Re-enable unsafe fork start method in the tests (was causing a deadlock with tensorflow)


	Added a test for seeding SubprocVecEnv and rendering


	Fixed reference in NatureCNN (pointed to older version with different network architecture)


	Fixed comments saying “CxWxH” instead of “CxHxW” (same style as in torch docs / commonly used)


	Added bit further comments on register/getting policies (“MlpPolicy”, “CnnPolicy”).


	Renamed progress (value from 1 in start of training to 0 in end) to progress_remaining.


	Added policies.py files for A2C/PPO, which define MlpPolicy/CnnPolicy (renamed ActorCriticPolicies).


	Added some missing tests for VecNormalize, VecCheckNan and PPO.






Documentation:


	Added a paragraph on “MlpPolicy”/”CnnPolicy” and policy naming scheme under “Developer Guide”


	Fixed second-level listing in changelog







Pre-Release 0.6.0 (2020-06-01)

Tensorboard support, refactored logger


Breaking Changes:


	Remove State-Dependent Exploration (SDE) support for TD3


	Methods were renamed in the logger:


	logkv -> record, writekvs -> write, writeseq ->  write_sequence,


	logkvs -> record_dict, dumpkvs -> dump,


	getkvs -> get_log_dict, logkv_mean -> record_mean,










New Features:


	Added env checker (Sync with Stable Baselines)


	Added VecCheckNan and VecVideoRecorder (Sync with Stable Baselines)


	Added determinism tests


	Added cmd_util and atari_wrappers


	Added support for MultiDiscrete and MultiBinary observation spaces (@rolandgvc)


	Added MultiCategorical and Bernoulli distributions for PPO/A2C (@rolandgvc)


	Added support for logging to tensorboard (@rolandgvc)


	Added VectorizedActionNoise for continuous vectorized environments (@PartiallyTyped)


	Log evaluation in the EvalCallback using the logger






Bug Fixes:


	Fixed a bug that prevented model trained on cpu to be loaded on gpu


	Fixed version number that had a new line included


	Fixed weird seg fault in docker image due to FakeImageEnv by reducing screen size


	Fixed sde_sample_freq that was not taken into account for SAC


	Pass logger module to BaseCallback otherwise they cannot write in the one used by the algorithms






Deprecations:



Others:


	Renamed to Stable-Baseline3


	Added Dockerfile


	Sync VecEnvs with Stable-Baselines


	Update requirement: gym>=0.17


	Added .readthedoc.yml file


	Added flake8 and make lint command


	Added Github workflow


	Added warning when passing both train_freq and n_episodes_rollout to Off-Policy Algorithms






Documentation:


	Added most documentation (adapted from Stable-Baselines)


	Added link to CONTRIBUTING.md in the README (@kinalmehta)


	Added gSDE project and update docstrings accordingly


	Fix TD3 example code block







Pre-Release 0.5.0 (2020-05-05)

CnnPolicy support for image observations, complete saving/loading for policies


Breaking Changes:


	Previous loading of policy weights is broken and replace by the new saving/loading for policy






New Features:


	Added optimizer_class and optimizer_kwargs to policy_kwargs in order to easily
customizer optimizers


	Complete independent save/load for policies


	Add CnnPolicy and VecTransposeImage to support images as input






Bug Fixes:


	Fixed reset_num_timesteps behavior, so env.reset() is not called if reset_num_timesteps=True


	Fixed squashed_output that was not pass to policy constructor for SAC and TD3 (would result in scaled actions for unscaled action spaces)






Deprecations:



Others:


	Cleanup rollout return


	Added get_device util to manage PyTorch devices


	Added type hints to logger + use f-strings






Documentation:




Pre-Release 0.4.0 (2020-02-14)

Proper pre-processing, independent save/load for policies


Breaking Changes:


	Removed CEMRL


	Model saved with previous versions cannot be loaded (because of the pre-preprocessing)






New Features:


	Add support for Discrete observation spaces


	Add saving/loading for policy weights, so the policy can be used without the model






Bug Fixes:


	Fix type hint for activation functions






Deprecations:



Others:


	Refactor handling of observation and action spaces


	Refactored features extraction to have proper preprocessing


	Refactored action distributions







Pre-Release 0.3.0 (2020-02-14)

Bug fixes, sync with Stable-Baselines, code cleanup


Breaking Changes:


	Removed default seed


	Bump dependencies (PyTorch and Gym)


	predict() now returns a tuple to match Stable-Baselines behavior






New Features:


	Better logging for SAC and PPO






Bug Fixes:


	Synced callbacks with Stable-Baselines


	Fixed colors in results_plotter


	Fix entropy computation (now summed over action dim)






Others:


	SAC with SDE now sample only one matrix


	Added clip_mean parameter to SAC policy


	Buffers now return NamedTuple


	More typing


	Add test for expln


	Renamed learning_rate to lr_schedule


	Add version.txt


	Add more tests for distribution






Documentation:


	Deactivated sphinx_autodoc_typehints extension







Pre-Release 0.2.0 (2020-02-14)

Python 3.6+ required, type checking, callbacks, doc build


Breaking Changes:


	Python 2 support was dropped, Stable Baselines3 now requires Python 3.6 or above


	Return type of evaluation.evaluate_policy() has been changed


	Refactored the replay buffer to avoid transformation between PyTorch and NumPy


	Created OffPolicyRLModel base class


	Remove deprecated JSON format for Monitor






New Features:


	Add seed() method to VecEnv class


	Add support for Callback (cf https://github.com/hill-a/stable-baselines/pull/644)


	Add methods for saving and loading replay buffer


	Add extend() method to the buffers


	Add get_vec_normalize_env() to BaseRLModel to retrieve VecNormalize wrapper when it exists


	Add results_plotter from Stable Baselines


	Improve predict() method to handle different type of observations (single, vectorized, …)






Bug Fixes:


	Fix loading model on CPU that were trained on GPU


	Fix reset_num_timesteps that was not used


	Fix entropy computation for squashed Gaussian (approximate it now)


	Fix seeding when using multiple environments (different seed per env)






Others:


	Add type check


	Converted all format string to f-strings


	Add test for OrnsteinUhlenbeckActionNoise


	Add type aliases in common.type_aliases






Documentation:


	fix documentation build







Pre-Release 0.1.0 (2020-01-20)

First Release: base algorithms and state-dependent exploration


New Features:


	Initial release of A2C, CEM-RL, PPO, SAC and TD3, working only with Box input space


	State-Dependent Exploration (SDE) for A2C, PPO, SAC and TD3
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Projects

This is a list of projects using stable-baselines3.
Please tell us, if you want your project to appear on this page ;)


DriverGym

An open-source Gym-compatible environment specifically tailored for developing RL algorithms for autonomous driving. DriverGym provides access to more than 1000 hours of expert logged data and also supports reactive and data-driven agent behavior. The performance of an RL policy can be easily validated using an extensive and flexible closed-loop evaluation protocol. We also provide behavior cloning baselines using supervised learning and RL, trained in DriverGym.


Authors: Parth Kothari, Christian Perone, Luca Bergamini, Alexandre Alahi, Peter Ondruska

Github: https://github.com/lyft/l5kit

Paper: https://arxiv.org/abs/2111.06889





RL Reach

A platform for running reproducible reinforcement learning experiments for customisable robotic reaching tasks. This self-contained and straightforward toolbox allows its users to quickly investigate and identify optimal training configurations.


Authors: Pierre Aumjaud, David McAuliffe, Francisco Javier Rodríguez Lera, Philip Cardiff

Github: https://github.com/PierreExeter/rl_reach

Paper: https://arxiv.org/abs/2102.04916





Generalized State Dependent Exploration for Deep Reinforcement Learning in Robotics

An exploration method to train RL agent directly on real robots.
It was the starting point of Stable-Baselines3.


Author: Antonin Raffin, Freek Stulp

Github: https://github.com/DLR-RM/stable-baselines3/tree/sde

Paper: https://arxiv.org/abs/2005.05719





Furuta Pendulum Robot

Everything you need to build and train a rotary inverted pendulum, also know as a furuta pendulum! This makes use of gSDE listed above.
The Github repository contains code, CAD files and a bill of materials for you to build the robot. You can watch a video overview of the project here [https://www.youtube.com/watch?v=Y6FVBbqjR40].


Authors: Armand du Parc Locmaria, Pierre Fabre

Github: https://github.com/Armandpl/furuta





Reacher

A solution to the second project of the Udacity deep reinforcement learning course.
It is an example of:


	wrapping single and multi-agent Unity environments to make them usable in Stable-Baselines3


	creating experimentation scripts which train and run A2C, PPO, TD3 and SAC models (a better choice for this one is https://github.com/DLR-RM/rl-baselines3-zoo)


	generating several pre-trained models which solve the reacher environment





Author: Marios Koulakis

Github: https://github.com/koulakis/reacher-deep-reinforcement-learning





SUMO-RL

A simple interface to instantiate RL environments with SUMO for Traffic Signal Control.


	Supports Multiagent RL


	Compatibility with gym.Env and popular RL libraries such as stable-baselines3 and RLlib


	Easy customisation: state and reward definitions are easily modifiable





Author: Lucas Alegre

Github: https://github.com/LucasAlegre/sumo-rl





gym-pybullet-drones

PyBullet Gym environments for single and multi-agent reinforcement learning of quadcopter control.


	Physics-based simulation for the development and test of quadcopter control.


	Compatibility with gym.Env, RLlib’s MultiAgentEnv.


	Learning and testing script templates for stable-baselines3 and RLlib.





Author: Jacopo Panerati

Github: https://github.com/utiasDSL/gym-pybullet-drones/

Paper: https://arxiv.org/abs/2103.02142





SuperSuit

SuperSuit contains easy to use wrappers for Gym (and multi-agent PettingZoo) environments to do all forms of common preprocessing (frame stacking, converting graphical observations to greyscale, max-and-skip for Atari, etc.). It also notably includes:

-Wrappers that apply lambda functions to observations, actions, or rewards with a single line of code.
-All wrappers can be used natively on vector environments, wrappers exist to Gym environments to vectorized environments and concatenate multiple vector environments together
-A wrapper is included that allows for using regular single agent RL libraries (e.g. stable baselines) to learn simple multi-agent PettingZoo environments, explained in this tutorial:


Author: Justin Terry

GitHub: https://github.com/PettingZoo-Team/SuperSuit

Tutorial on multi-agent support in stable baselines: https://towardsdatascience.com/multi-agent-deep-reinforcement-learning-in-15-lines-of-code-using-pettingzoo-e0b963c0820b





Rocket League Gym

A fully custom python API and C++ DLL to treat the popular game Rocket League like an OpenAI Gym environment.


	Dramatically increases the rate at which the game runs.


	Supports full configuration of initial states, observations, rewards, and terminal states.


	Supports multiple simultaneous game clients.


	Supports multi-agent training and self-play.


	Provides custom wrappers for easy use with stable-baselines3.





Authors: Lucas Emery, Matthew Allen

GitHub: https://github.com/lucas-emery/rocket-league-gym

Website: https://rlgym.github.io





gym-electric-motor

An OpenAI gym environment for the simulation and control of electric drive trains.
Think of Matlab/Simulink for electric motors, inverters, and load profiles, but non-graphical and open-source in Python.

gym-electric-motor offers a rich interface for customization, including
- plug-and-play of different control algorithms ranging from classical controllers (like field-oriented control) up to any RL agent you can find,
- reward shaping,
- load profiling,
- finite-set or continuous-set control,
- one-phase and three-phase motors such as induction machines and permanent magnet synchronous motors, among others.

SB3 is used as an example in one of many tutorials showcasing the easy usage of gym-electric-motor.


Author: Paderborn University, LEA department [https://github.com/upb-lea]

GitHub: https://github.com/upb-lea/gym-electric-motor

SB3 Tutorial: Colab Link [https://colab.research.google.com/github/upb-lea/gym-electric-motor/blob/master/examples/reinforcement_learning_controllers/stable_baselines3_dqn_disc_pmsm_example.ipynb]

Paper: JOSS [https://joss.theoj.org/papers/10.21105/joss.02498], TNNLS [https://ieeexplore.ieee.org/document/9241851], ArXiv [https://arxiv.org/abs/1910.09434]





policy-distillation-baselines

A PyTorch implementation of Policy Distillation for control, which has well-trained teachers via Stable Baselines3.


	policy-distillation-baselines provides some good examples for policy distillation in various environment and using reliable algorithms.


	All well-trained models and algorithms are compatible with Stable Baselines3.





Authors: Junyeob Baek

GitHub: https://github.com/CUN-bjy/policy-distillation-baselines

Demo: link [https://github.com/CUN-bjy/policy-distillation-baselines/issues/3#issuecomment-817730173]





highway-env

A minimalist environment for decision-making in Autonomous Driving.

Driving policies can be trained in different scenarios, and several notebooks using SB3 are provided as examples.


Author: Edouard Leurent [https://edouardleurent.com]

GitHub: https://github.com/eleurent/highway-env

Examples: Colab Links [https://github.com/eleurent/highway-env/tree/master/scripts#using-stable-baselines3]





tactile-gym

Suite of RL environments focused on using a simulated tactile sensor as the primary source of observations. Sim-to-Real results across 4 out of 5 proposed envs.


Author: Alex Church

GitHub: https://github.com/ac-93/tactile_gym

Paper: https://arxiv.org/abs/2106.08796

Website: tactile-gym website [https://sites.google.com/my.bristol.ac.uk/tactile-gym-sim2real/home]





RLeXplore

RLeXplore is a set of implementations of intrinsic reward driven-exploration approaches in reinforcement learning using PyTorch, which can be deployed in arbitrary algorithms in a plug-and-play manner. In particular, RLeXplore is designed to be well compatible with Stable-Baselines3, providing more stable exploration benchmarks.


	Support arbitrary RL algorithms;


	Highly modular and high expansibility;


	Keep up with the latest research progress.





Author: Mingqi Yuan

GitHub: https://github.com/yuanmingqi/rl-exploration-baselines





UAV_Navigation_DRL_AirSim

A platform for training UAV navigation policies in complex unknown environments.


	Based on AirSim and SB3.


	An Open AI Gym env is created including kinematic models for both multirotor and fixed-wing UAVs.


	Some UE4 environments are provided to train and test the navigation policy.




Try to train your own autonomous flight policy and even transfer it to real UAVs! Have fun ^_^!


Author: Lei He

Github: https://github.com/heleidsn/UAV_Navigation_DRL_AirSim





Pink Noise Exploration

A simple library for pink noise exploration with deterministic (DDPG / TD3) and stochastic (SAC) off-policy algorithms. Pink noise has been shown to work better than uncorrelated Gaussian noise (the default choice) and Ornstein-Uhlenbeck noise on a range of continuous control benchmark tasks. This library is designed to work with Stable Baselines3.


Authors: Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, Georg Martius

Github: https://github.com/martius-lab/pink-noise-rl

Paper: https://openreview.net/forum?id=hQ9V5QN27eS (Oral at ICLR 2023)
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from gym import spaces

# Unnormalized actions spaces only works with algorithms

# that don't really directly on a Gaussian to define the policy

# (e.g. DDPG or SAC, where their output is rescaled to fit the action space limits)

# LIMITS TOO BIG: In this case, the sampled actions will only have values around 0
# far away from the limits of the space

action_space = spaces.Box(low=-1000, high=1000, shape=(n_actions,), dtype="float32")

# LIMITS TOO SMALL: In that case, the sampled actions will almost always saturate
# (be greater than the limits)
action_space = spaces.Box(low=-0.02, high=0.02, shape=(n_actions,), dtype="float32")

# BEST PRACTICE: Action space is normalized, symmetric and has an interval range of 2,
# which is usually the same magnitude as the initial standard deviation

# of the Gaussian used to define the policy (e.g. unit initial std in Stable-Baselines)
action_space = spaces.Box(low=-1, high=1, shape=(n_actions,), dtype="float32")
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