Source code for stable_baselines3.ppo.ppo

import warnings
from typing import Any, Dict, Optional, Type, TypeVar, Union

import numpy as np
import torch as th
from gym import spaces
from torch.nn import functional as F

from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, BasePolicy, MultiInputActorCriticPolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance, get_schedule_fn

PPOSelf = TypeVar("PPOSelf", bound="PPO")


[docs]class PPO(OnPolicyAlgorithm): """ Proximal Policy Optimization algorithm (PPO) (clip version) Paper: https://arxiv.org/abs/1707.06347 Code: This implementation borrows code from OpenAI Spinning Up (https://github.com/openai/spinningup/) https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and Stable Baselines (PPO2 from https://github.com/hill-a/stable-baselines) Introduction to PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html :param policy: The policy model to use (MlpPolicy, CnnPolicy, ...) :param env: The environment to learn from (if registered in Gym, can be str) :param learning_rate: The learning rate, it can be a function of the current progress remaining (from 1 to 0) :param n_steps: The number of steps to run for each environment per update (i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel) NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization) See https://github.com/pytorch/pytorch/issues/29372 :param batch_size: Minibatch size :param n_epochs: Number of epoch when optimizing the surrogate loss :param gamma: Discount factor :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator :param clip_range: Clipping parameter, it can be a function of the current progress remaining (from 1 to 0). :param clip_range_vf: Clipping parameter for the value function, it can be a function of the current progress remaining (from 1 to 0). This is a parameter specific to the OpenAI implementation. If None is passed (default), no clipping will be done on the value function. IMPORTANT: this clipping depends on the reward scaling. :param normalize_advantage: Whether to normalize or not the advantage :param ent_coef: Entropy coefficient for the loss calculation :param vf_coef: Value function coefficient for the loss calculation :param max_grad_norm: The maximum value for the gradient clipping :param use_sde: Whether to use generalized State Dependent Exploration (gSDE) instead of action noise exploration (default: False) :param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE Default: -1 (only sample at the beginning of the rollout) :param target_kl: Limit the KL divergence between updates, because the clipping is not enough to prevent large update see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213) By default, there is no limit on the kl div. :param tensorboard_log: the log location for tensorboard (if None, no logging) :param create_eval_env: Whether to create a second environment that will be used for evaluating the agent periodically (Only available when passing string for the environment). Caution, this parameter is deprecated and will be removed in the future. Please use `EvalCallback` or a custom Callback instead. :param policy_kwargs: additional arguments to be passed to the policy on creation :param verbose: Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for debug messages :param seed: Seed for the pseudo random generators :param device: Device (cpu, cuda, ...) on which the code should be run. Setting it to auto, the code will be run on the GPU if possible. :param _init_setup_model: Whether or not to build the network at the creation of the instance """ policy_aliases: Dict[str, Type[BasePolicy]] = { "MlpPolicy": ActorCriticPolicy, "CnnPolicy": ActorCriticCnnPolicy, "MultiInputPolicy": MultiInputActorCriticPolicy, } def __init__( self, policy: Union[str, Type[ActorCriticPolicy]], env: Union[GymEnv, str], learning_rate: Union[float, Schedule] = 3e-4, n_steps: int = 2048, batch_size: int = 64, n_epochs: int = 10, gamma: float = 0.99, gae_lambda: float = 0.95, clip_range: Union[float, Schedule] = 0.2, clip_range_vf: Union[None, float, Schedule] = None, normalize_advantage: bool = True, ent_coef: float = 0.0, vf_coef: float = 0.5, max_grad_norm: float = 0.5, use_sde: bool = False, sde_sample_freq: int = -1, target_kl: Optional[float] = None, tensorboard_log: Optional[str] = None, create_eval_env: bool = False, policy_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 0, seed: Optional[int] = None, device: Union[th.device, str] = "auto", _init_setup_model: bool = True, ): super().__init__( policy, env, learning_rate=learning_rate, n_steps=n_steps, gamma=gamma, gae_lambda=gae_lambda, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, use_sde=use_sde, sde_sample_freq=sde_sample_freq, tensorboard_log=tensorboard_log, policy_kwargs=policy_kwargs, verbose=verbose, device=device, create_eval_env=create_eval_env, seed=seed, _init_setup_model=False, supported_action_spaces=( spaces.Box, spaces.Discrete, spaces.MultiDiscrete, spaces.MultiBinary, ), ) # Sanity check, otherwise it will lead to noisy gradient and NaN # because of the advantage normalization if normalize_advantage: assert ( batch_size > 1 ), "`batch_size` must be greater than 1. See https://github.com/DLR-RM/stable-baselines3/issues/440" if self.env is not None: # Check that `n_steps * n_envs > 1` to avoid NaN # when doing advantage normalization buffer_size = self.env.num_envs * self.n_steps assert buffer_size > 1 or ( not normalize_advantage ), f"`n_steps * n_envs` must be greater than 1. Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}" # Check that the rollout buffer size is a multiple of the mini-batch size untruncated_batches = buffer_size // batch_size if buffer_size % batch_size > 0: warnings.warn( f"You have specified a mini-batch size of {batch_size}," f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`," f" after every {untruncated_batches} untruncated mini-batches," f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n" f"We recommend using a `batch_size` that is a factor of `n_steps * n_envs`.\n" f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})" ) self.batch_size = batch_size self.n_epochs = n_epochs self.clip_range = clip_range self.clip_range_vf = clip_range_vf self.normalize_advantage = normalize_advantage self.target_kl = target_kl if _init_setup_model: self._setup_model() def _setup_model(self) -> None: super()._setup_model() # Initialize schedules for policy/value clipping self.clip_range = get_schedule_fn(self.clip_range) if self.clip_range_vf is not None: if isinstance(self.clip_range_vf, (float, int)): assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping" self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
[docs] def train(self) -> None: """ Update policy using the currently gathered rollout buffer. """ # Switch to train mode (this affects batch norm / dropout) self.policy.set_training_mode(True) # Update optimizer learning rate self._update_learning_rate(self.policy.optimizer) # Compute current clip range clip_range = self.clip_range(self._current_progress_remaining) # Optional: clip range for the value function if self.clip_range_vf is not None: clip_range_vf = self.clip_range_vf(self._current_progress_remaining) entropy_losses = [] pg_losses, value_losses = [], [] clip_fractions = [] continue_training = True # train for n_epochs epochs for epoch in range(self.n_epochs): approx_kl_divs = [] # Do a complete pass on the rollout buffer for rollout_data in self.rollout_buffer.get(self.batch_size): actions = rollout_data.actions if isinstance(self.action_space, spaces.Discrete): # Convert discrete action from float to long actions = rollout_data.actions.long().flatten() # Re-sample the noise matrix because the log_std has changed if self.use_sde: self.policy.reset_noise(self.batch_size) values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions) values = values.flatten() # Normalize advantage advantages = rollout_data.advantages # Normalization does not make sense if mini batchsize == 1, see GH issue #325 if self.normalize_advantage and len(advantages) > 1: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) # ratio between old and new policy, should be one at the first iteration ratio = th.exp(log_prob - rollout_data.old_log_prob) # clipped surrogate loss policy_loss_1 = advantages * ratio policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range) policy_loss = -th.min(policy_loss_1, policy_loss_2).mean() # Logging pg_losses.append(policy_loss.item()) clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item() clip_fractions.append(clip_fraction) if self.clip_range_vf is None: # No clipping values_pred = values else: # Clip the difference between old and new value # NOTE: this depends on the reward scaling values_pred = rollout_data.old_values + th.clamp( values - rollout_data.old_values, -clip_range_vf, clip_range_vf ) # Value loss using the TD(gae_lambda) target value_loss = F.mse_loss(rollout_data.returns, values_pred) value_losses.append(value_loss.item()) # Entropy loss favor exploration if entropy is None: # Approximate entropy when no analytical form entropy_loss = -th.mean(-log_prob) else: entropy_loss = -th.mean(entropy) entropy_losses.append(entropy_loss.item()) loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss # Calculate approximate form of reverse KL Divergence for early stopping # see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417 # and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419 # and Schulman blog: http://joschu.net/blog/kl-approx.html with th.no_grad(): log_ratio = log_prob - rollout_data.old_log_prob approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy() approx_kl_divs.append(approx_kl_div) if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl: continue_training = False if self.verbose >= 1: print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}") break # Optimization step self.policy.optimizer.zero_grad() loss.backward() # Clip grad norm th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) self.policy.optimizer.step() if not continue_training: break self._n_updates += self.n_epochs explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten()) # Logs self.logger.record("train/entropy_loss", np.mean(entropy_losses)) self.logger.record("train/policy_gradient_loss", np.mean(pg_losses)) self.logger.record("train/value_loss", np.mean(value_losses)) self.logger.record("train/approx_kl", np.mean(approx_kl_divs)) self.logger.record("train/clip_fraction", np.mean(clip_fractions)) self.logger.record("train/loss", loss.item()) self.logger.record("train/explained_variance", explained_var) if hasattr(self.policy, "log_std"): self.logger.record("train/std", th.exp(self.policy.log_std).mean().item()) self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard") self.logger.record("train/clip_range", clip_range) if self.clip_range_vf is not None: self.logger.record("train/clip_range_vf", clip_range_vf)
[docs] def learn( self: PPOSelf, total_timesteps: int, callback: MaybeCallback = None, log_interval: int = 1, eval_env: Optional[GymEnv] = None, eval_freq: int = -1, n_eval_episodes: int = 5, tb_log_name: str = "PPO", eval_log_path: Optional[str] = None, reset_num_timesteps: bool = True, progress_bar: bool = False, ) -> PPOSelf: return super().learn( total_timesteps=total_timesteps, callback=callback, log_interval=log_interval, eval_env=eval_env, eval_freq=eval_freq, n_eval_episodes=n_eval_episodes, tb_log_name=tb_log_name, eval_log_path=eval_log_path, reset_num_timesteps=reset_num_timesteps, progress_bar=progress_bar, )