Source code for stable_baselines3.td3.td3

import time
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union

import numpy as np
import torch as th
from torch.nn import functional as F

from stable_baselines3.common import logger
from stable_baselines3.common.buffers import ReplayBuffer
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.noise import ActionNoise
from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, RolloutReturn
from stable_baselines3.common.utils import polyak_update, safe_mean
from stable_baselines3.common.vec_env import VecEnv
from stable_baselines3.td3.policies import TD3Policy


[docs]class TD3(OffPolicyAlgorithm): """ Twin Delayed DDPG (TD3) Addressing Function Approximation Error in Actor-Critic Methods. Original implementation: https://github.com/sfujim/TD3 Paper: https://arxiv.org/abs/1802.09477 Introduction to TD3: https://spinningup.openai.com/en/latest/algorithms/td3.html :param policy: (TD3Policy or str) The policy model to use (MlpPolicy, CnnPolicy, ...) :param env: (GymEnv or str) The environment to learn from (if registered in Gym, can be str) :param learning_rate: (float or callable) learning rate for adam optimizer, the same learning rate will be used for all networks (Q-Values, Actor and Value function) it can be a function of the current progress remaining (from 1 to 0) :param buffer_size: (int) size of the replay buffer :param learning_starts: (int) how many steps of the model to collect transitions for before learning starts :param batch_size: (int) Minibatch size for each gradient update :param tau: (float) the soft update coefficient ("Polyak update", between 0 and 1) :param gamma: (float) the discount factor :param train_freq: (int) Update the model every ``train_freq`` steps. Set to `-1` to disable. :param gradient_steps: (int) How many gradient steps to do after each rollout (see ``train_freq`` and ``n_episodes_rollout``) Set to ``-1`` means to do as many gradient steps as steps done in the environment during the rollout. :param n_episodes_rollout: (int) Update the model every ``n_episodes_rollout`` episodes. Note that this cannot be used at the same time as ``train_freq``. Set to `-1` to disable. :param action_noise: (ActionNoise) the action noise type (None by default), this can help for hard exploration problem. Cf common.noise for the different action noise type. :param optimize_memory_usage: (bool) Enable a memory efficient variant of the replay buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195 :param policy_delay: (int) Policy and target networks will only be updated once every policy_delay steps per training steps. The Q values will be updated policy_delay more often (update every training step). :param target_policy_noise: (float) Standard deviation of Gaussian noise added to target policy (smoothing noise) :param target_noise_clip: (float) Limit for absolute value of target policy smoothing noise. :param use_sde: (bool) Whether to use State Dependent Exploration (SDE) instead of action noise exploration (default: False) :param sde_sample_freq: (int) Sample a new noise matrix every n steps when using SDE Default: -1 (only sample at the beginning of the rollout) :param sde_max_grad_norm: (float) :param sde_ent_coef: (float) :param sde_log_std_scheduler: (callable) :param use_sde_at_warmup: (bool) Whether to use SDE instead of uniform sampling during the warm up phase (before learning starts) :param create_eval_env: (bool) Whether to create a second environment that will be used for evaluating the agent periodically. (Only available when passing string for the environment) :param policy_kwargs: (dict) additional arguments to be passed to the policy on creation :param verbose: (int) the verbosity level: 0 no output, 1 info, 2 debug :param seed: (int) Seed for the pseudo random generators :param device: (str or th.device) Device (cpu, cuda, ...) on which the code should be run. Setting it to auto, the code will be run on the GPU if possible. :param _init_setup_model: (bool) Whether or not to build the network at the creation of the instance """ def __init__( self, policy: Union[str, Type[TD3Policy]], env: Union[GymEnv, str], learning_rate: Union[float, Callable] = 1e-3, buffer_size: int = int(1e6), learning_starts: int = 100, batch_size: int = 100, tau: float = 0.005, gamma: float = 0.99, train_freq: int = -1, gradient_steps: int = -1, n_episodes_rollout: int = 1, action_noise: Optional[ActionNoise] = None, optimize_memory_usage: bool = False, policy_delay: int = 2, target_policy_noise: float = 0.2, target_noise_clip: float = 0.5, use_sde: bool = False, sde_sample_freq: int = -1, sde_max_grad_norm: float = 1, sde_ent_coef: float = 0.0, sde_log_std_scheduler: Optional[Callable] = None, use_sde_at_warmup: bool = False, tensorboard_log: Optional[str] = None, create_eval_env: bool = False, policy_kwargs: Dict[str, Any] = None, verbose: int = 0, seed: Optional[int] = None, device: Union[th.device, str] = "auto", _init_setup_model: bool = True, ): super(TD3, self).__init__( policy, env, TD3Policy, learning_rate, buffer_size, learning_starts, batch_size, tau, gamma, train_freq, gradient_steps, n_episodes_rollout, action_noise=action_noise, policy_kwargs=policy_kwargs, tensorboard_log=tensorboard_log, verbose=verbose, device=device, create_eval_env=create_eval_env, seed=seed, use_sde=use_sde, sde_sample_freq=sde_sample_freq, use_sde_at_warmup=use_sde_at_warmup, optimize_memory_usage=optimize_memory_usage, ) self.policy_delay = policy_delay self.target_noise_clip = target_noise_clip self.target_policy_noise = target_policy_noise # State Dependent Exploration self.sde_max_grad_norm = sde_max_grad_norm self.sde_ent_coef = sde_ent_coef self.sde_log_std_scheduler = sde_log_std_scheduler self.on_policy_exploration = True self.sde_vf = None if _init_setup_model: self._setup_model() def _setup_model(self) -> None: super(TD3, self)._setup_model() self._create_aliases() def _create_aliases(self) -> None: self.actor = self.policy.actor self.actor_target = self.policy.actor_target self.critic = self.policy.critic self.critic_target = self.policy.critic_target self.vf_net = self.policy.vf_net
[docs] def train(self, gradient_steps: int, batch_size: int = 100) -> None: # Update learning rate according to lr schedule self._update_learning_rate([self.actor.optimizer, self.critic.optimizer]) for gradient_step in range(gradient_steps): # Sample replay buffer replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env) with th.no_grad(): # Select action according to policy and add clipped noise noise = replay_data.actions.clone().data.normal_(0, self.target_policy_noise) noise = noise.clamp(-self.target_noise_clip, self.target_noise_clip) next_actions = (self.actor_target(replay_data.next_observations) + noise).clamp(-1, 1) # Compute the target Q value: min over all critics targets targets = th.cat(self.critic_target(replay_data.next_observations, next_actions), dim=1) target_q, _ = th.min(targets, dim=1, keepdim=True) target_q = replay_data.rewards + (1 - replay_data.dones) * self.gamma * target_q # Get current Q estimates for each critic network current_q_esimates = self.critic(replay_data.observations, replay_data.actions) # Compute critic loss critic_loss = sum([F.mse_loss(current_q, target_q) for current_q in current_q_esimates]) # Optimize the critics self.critic.optimizer.zero_grad() critic_loss.backward() self.critic.optimizer.step() # Delayed policy updates if gradient_step % self.policy_delay == 0: # Compute actor loss actor_loss = -self.critic.q1_forward(replay_data.observations, self.actor(replay_data.observations)).mean() # Optimize the actor self.actor.optimizer.zero_grad() actor_loss.backward() self.actor.optimizer.step() polyak_update(self.critic.parameters(), self.critic_target.parameters(), self.tau) polyak_update(self.actor.parameters(), self.actor_target.parameters(), self.tau) self._n_updates += gradient_steps logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
def train_sde(self) -> None: # Update optimizer learning rate # self._update_learning_rate(self.policy.optimizer) # Unpack obs, action, advantage, returns = [ self.rollout_data[key] for key in ["observations", "actions", "advantage", "returns"] ] log_prob, entropy = self.actor.evaluate_actions(obs, action) values = self.vf_net(obs).flatten() # Normalize advantage # if self.normalize_advantage: # advantage = (advantage - advantage.mean()) / (advantage.std() + 1e-8) # Value loss using the TD(gae_lambda) target value_loss = F.mse_loss(returns, values) # A2C loss policy_loss = -(advantage * log_prob).mean() # pytype: disable=attribute-error # Entropy loss favor exploration if entropy is None: # Approximate entropy when no analytical form entropy_loss = -log_prob.mean() else: entropy_loss = -th.mean(entropy) vf_coef = 0.5 loss = policy_loss + self.sde_ent_coef * entropy_loss + vf_coef * value_loss # Optimization step self.actor.sde_optimizer.zero_grad() loss.backward() assert not th.isnan(log_prob).any(), log_prob assert not th.isnan(entropy).any() assert not th.isnan(self.actor.log_std.grad).any() assert not th.isnan(self.actor.log_std).any() # Clip grad norm th.nn.utils.clip_grad_norm_([self.actor.log_std], self.sde_max_grad_norm) self.actor.sde_optimizer.step() del self.rollout_data
[docs] def learn( self, total_timesteps: int, callback: MaybeCallback = None, log_interval: int = 4, eval_env: Optional[GymEnv] = None, eval_freq: int = -1, n_eval_episodes: int = 5, tb_log_name: str = "TD3", eval_log_path: Optional[str] = None, reset_num_timesteps: bool = True, ) -> OffPolicyAlgorithm: total_timesteps, callback = self._setup_learn( total_timesteps, eval_env, callback, eval_freq, n_eval_episodes, eval_log_path, reset_num_timesteps, tb_log_name ) callback.on_training_start(locals(), globals()) while self.num_timesteps < total_timesteps: rollout = self.collect_rollouts( self.env, n_episodes=self.n_episodes_rollout, n_steps=self.train_freq, action_noise=self.action_noise, callback=callback, learning_starts=self.learning_starts, replay_buffer=self.replay_buffer, log_interval=log_interval, ) if rollout.continue_training is False: break self._update_current_progress_remaining(self.num_timesteps, total_timesteps) if self.num_timesteps > 0 and self.num_timesteps > self.learning_starts: if self.use_sde: if self.sde_log_std_scheduler is not None: # Call the scheduler value = self.sde_log_std_scheduler(self._current_progress_remaining) self.actor.log_std.data = th.ones_like(self.actor.log_std) * value else: # On-policy gradient self.train_sde() gradient_steps = self.gradient_steps if self.gradient_steps > 0 else rollout.episode_timesteps self.train(gradient_steps, batch_size=self.batch_size) callback.on_training_end() return self
[docs] def collect_rollouts( # noqa: C901 self, env: VecEnv, # Type hint as string to avoid circular import callback: "BaseCallback", n_episodes: int = 1, n_steps: int = -1, action_noise: Optional[ActionNoise] = None, learning_starts: int = 0, replay_buffer: Optional[ReplayBuffer] = None, log_interval: Optional[int] = None, ) -> RolloutReturn: """ Collect rollout using the current policy (and possibly fill the replay buffer) :param env: (VecEnv) The training environment :param n_episodes: (int) Number of episodes to use to collect rollout data You can also specify a ``n_steps`` instead :param n_steps: (int) Number of steps to use to collect rollout data You can also specify a ``n_episodes`` instead. :param action_noise: (Optional[ActionNoise]) Action noise that will be used for exploration Required for deterministic policy (e.g. TD3). This can also be used in addition to the stochastic policy for SAC. :param callback: (BaseCallback) Callback that will be called at each step (and at the beginning and end of the rollout) :param learning_starts: (int) Number of steps before learning for the warm-up phase. :param replay_buffer: (ReplayBuffer) :param log_interval: (int) Log data every ``log_interval`` episodes :return: (RolloutReturn) """ episode_rewards, total_timesteps = [], [] total_steps, total_episodes = 0, 0 assert isinstance(env, VecEnv), "You must pass a VecEnv" assert env.num_envs == 1, "OffPolicyRLModel only support single environment" self.rollout_data = None if self.use_sde: self.actor.reset_noise() # Reset rollout data if self.on_policy_exploration: self.rollout_data = {key: [] for key in ["observations", "actions", "rewards", "dones", "values"]} callback.on_rollout_start() continue_training = True while total_steps < n_steps or total_episodes < n_episodes: done = False episode_reward, episode_timesteps = 0.0, 0 while not done: if self.use_sde and self.sde_sample_freq > 0 and total_steps % self.sde_sample_freq == 0: # Sample a new noise matrix self.actor.reset_noise() # Select action randomly or according to policy if self.num_timesteps < learning_starts and not (self.use_sde and self.use_sde_at_warmup): # Warmup phase unscaled_action = np.array([self.action_space.sample()]) else: # Note: we assume that the policy uses tanh to scale the action # We use non-deterministic action in the case of SAC, for TD3, it does not matter unscaled_action, _ = self.predict(self._last_obs, deterministic=False) # Rescale the action from [low, high] to [-1, 1] scaled_action = self.policy.scale_action(unscaled_action) if self.use_sde: # When using SDE, the action can be out of bounds # TODO: fix with squashing and account for that in the proba distribution clipped_action = np.clip(scaled_action, -1, 1) else: clipped_action = scaled_action # Add noise to the action (improve exploration) if action_noise is not None: # NOTE: in the original implementation of TD3, the noise was applied to the unscaled action # Update(October 2019): Not anymore clipped_action = np.clip(clipped_action + action_noise(), -1, 1) # Rescale and perform action new_obs, reward, done, infos = env.step(self.policy.unscale_action(clipped_action)) # Only stop training if return value is False, not when it is None. if callback.on_step() is False: return RolloutReturn(0.0, total_steps, total_episodes, continue_training=False) episode_reward += reward # Retrieve reward and episode length if using Monitor wrapper self._update_info_buffer(infos, done) # Store data in replay buffer if replay_buffer is not None: # Store only the unnormalized version if self._vec_normalize_env is not None: new_obs_ = self._vec_normalize_env.get_original_obs() reward_ = self._vec_normalize_env.get_original_reward() else: # Avoid changing the original ones self._last_original_obs, new_obs_, reward_ = self._last_obs, new_obs, reward replay_buffer.add(self._last_original_obs, new_obs_, clipped_action, reward_, done) if self.rollout_data is not None: # Assume only one env self.rollout_data["observations"].append(self._last_obs[0].copy()) self.rollout_data["actions"].append(scaled_action[0].copy()) self.rollout_data["rewards"].append(reward[0].copy()) self.rollout_data["dones"].append(done[0].copy()) obs_tensor = th.FloatTensor(self._last_obs).to(self.device) self.rollout_data["values"].append(self.vf_net(obs_tensor)[0].cpu().detach().numpy()) self._last_obs = new_obs # Save the unnormalized observation if self._vec_normalize_env is not None: self._last_original_obs = new_obs_ self.num_timesteps += 1 episode_timesteps += 1 total_steps += 1 if 0 < n_steps <= total_steps: break if done: total_episodes += 1 self._episode_num += 1 episode_rewards.append(episode_reward) total_timesteps.append(episode_timesteps) if action_noise is not None: action_noise.reset() # Log training infos if log_interval is not None and self._episode_num % log_interval == 0: fps = int(self.num_timesteps / (time.time() - self.start_time)) logger.record("time/episodes", self._episode_num, exclude="tensorboard") if len(self.ep_info_buffer) > 0 and len(self.ep_info_buffer[0]) > 0: logger.record("rollout/ep_rew_mean", safe_mean([ep_info["r"] for ep_info in self.ep_info_buffer])) logger.record("rollout/ep_len_mean", safe_mean([ep_info["l"] for ep_info in self.ep_info_buffer])) logger.record("time/fps", fps) logger.record("time/time_elapsed", int(time.time() - self.start_time), exclude="tensorboard") logger.record("time/total timesteps", self.num_timesteps, exclude="tensorboard") if self.use_sde: logger.record("train/std", (self.actor.get_std()).mean().item()) if len(self.ep_success_buffer) > 0: logger.record("rollout/success rate", safe_mean(self.ep_success_buffer)) # Pass the number of timesteps for tensorboard logger.dump(step=self.num_timesteps) mean_reward = np.mean(episode_rewards) if total_episodes > 0 else 0.0 # Post processing if self.rollout_data is not None: for key in ["observations", "actions", "rewards", "dones", "values"]: self.rollout_data[key] = th.FloatTensor(np.array(self.rollout_data[key])).to(self.device) self.rollout_data["returns"] = self.rollout_data["rewards"].clone() # pytype: disable=attribute-error self.rollout_data["advantage"] = self.rollout_data["rewards"].clone() # pytype: disable=attribute-error # Compute return and advantage last_return = 0.0 for step in reversed(range(len(self.rollout_data["rewards"]))): if step == len(self.rollout_data["rewards"]) - 1: next_non_terminal = 1.0 - done[0] next_value = self.vf_net(th.FloatTensor(self._last_obs).to(self.device))[0].detach() last_return = self.rollout_data["rewards"][step] + next_non_terminal * next_value else: next_non_terminal = 1.0 - self.rollout_data["dones"][step + 1] last_return = self.rollout_data["rewards"][step] + self.gamma * last_return * next_non_terminal self.rollout_data["returns"][step] = last_return self.rollout_data["advantage"] = self.rollout_data["returns"] - self.rollout_data["values"] callback.on_rollout_end() return RolloutReturn(mean_reward, total_steps, total_episodes, continue_training)
[docs] def excluded_save_params(self) -> List[str]: """ Returns the names of the parameters that should be excluded by default when saving the model. :return: (List[str]) List of parameters that should be excluded from save """ # Exclude aliases return super(TD3, self).excluded_save_params() + ["actor", "critic", "vf_net", "actor_target", "critic_target"]
[docs] def get_torch_variables(self) -> Tuple[List[str], List[str]]: """ cf base class """ state_dicts = ["policy", "actor.optimizer", "critic.optimizer"] return state_dicts, []